K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Tương tự 2B. Gợi ý: Kéo dài AC và BD cắt nhau tại E. Xét các trường hợp khi M º A Þ C º A, D º E và khi M º B Þ D º B, C º E.

Từ đó chứng minh được I thuộc đường trung bình của DABE.

6 tháng 12 2018

Tương tự bài 4. kéo dài AC và BD cắt nhau tại E. Từ đó chứng minh được I thuộc đường trung bình của DABE.

25 tháng 10 2021

Bài 4 nào thế bạn

26 tháng 2 2020

Trên đoạn AC lấy H sao cho H là trung điểm của đoạn.

Lại có: E là trung điểm của AD nên EH là đường trung bình của tam giác ACD

Do đó CD = 2EH (1)

Gọi I là trung điểm của AM, K là trung điểm của AB

Ta có: EK là đường trung bình của tam giác ADB nên EK //DB

Suy ra góc EKI = 600. Hoàn toàn tương tự: góc FKB = 600

Do đó góc EKF = 600

Tương tự ta có góc HIE = 600

Xét hai tam giác HIE và FKE có:

     HI = FK (cùng bằng 1 nửa AC)

     góc HIE = góc EKE (=600)

     EI = EK (cùng bằng 1 nửa DM)

Suy ra tam giác HIE = tam giác FKE (c.g.c)

Suy ra EF = EH (2)

Từ (1) và (2) suy ra EF = 1/2CD (đpcm)

8 tháng 3 2020

Cách 1: *cách của Assassin_07*

Cách 2: Ta tạo ra đoạn thẳng bằng nửa CD, đó là PQ (P là trung điểm MC, Q là trung điểm MD). Để chứng minh EF=PQ, ta lấy K là trung điểm AB rồi chứng minh ∆EKF=∆QMP (c.g.c)