Cho a,b,c là 3 số tự nhiên nguyên tố cùng nhau từng đôi một. Chứng minh (ab+bc+ca,abc)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\)ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
Kết luận: abc và ab+bc+ca nguyên tố cùng nhau
giả sử abc và ab+bc+ca không nguyên tố cùng nhau
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH:
TH1: a chia hết cho d => ab,ac chia hết cho d
mà ab+bc+ca chia hết cho d
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d => ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Giả sử (ab+bc+ca,abc)\(\ne1\)
Gọi d là ước chung của ab+bc+ca và abc\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(ab+bc+ca\right)⋮d\\abc⋮d\end{matrix}\right.\)
Ta có abc⋮d mà a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một nên sẽ có 3 trường hợp
TH1:a⋮d\(\Rightarrow ab+ac⋮\)d
Mà ab+ac+bc⋮d
Suy ra \(bc⋮\)d\(\Rightarrow\) b hoặc c chia hết cho d(trái với a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một)
TH2:b⋮d\(\Rightarrow ab+bc⋮\)d
Mà ab+ac+bc⋮d
Suy ra \(ac⋮\)d\(\Rightarrow\) a hoặc c chia hết cho d(trái với a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một)
TH3:c⋮d\(\Rightarrow bc+ac⋮\)d
Mà ab+ac+bc⋮d
Suy ra \(ab⋮\)d\(\Rightarrow\) a hoặc b chia hết cho d(trái với a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một)
Vậy điều giả sử sai
Vậy (ab+bc+ca,abc)=1