Cho hình thang ABCD(AB//CD) có ^D=60 ddoooj và CD=3AB=3AD
M,N lần lượt là trung điểm của AB, CD trên cạnh CD lấy E sao cho DE=1/3CD
a) Tứ giác ABED là hình gì
b)CMR MBNE là hình chữ nhật
c) biết AB=a tính chu vi tam giác DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABED có
AB//ED(gt)
AB=ED
Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Ta có: \(AB=\dfrac{1}{2}CD\)(gt)
mà \(ED=EC=\dfrac{CD}{2}\)(E là trung điểm của CD)
nên AB=ED=EC
Xét tứ giác ABED có
AB//DE
AB=DE(cmt)
Do đó: ABED là hình bình hành
Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
- Do E là trung điểm của CD
\(=>DE=CE=\dfrac{CD}{2}\)
Mà \(AB=\dfrac{1}{2}CD\) (gt)
\(=>AB=DE=CD\)
- DE và CE trùng CD, AB // CD => AB // DE // CE
Tứ giác ABED có:
- AB=DE (cmt)
- AB // DE (cmt)
Vậy: Tứ giác ABED là hình bình hành (đpcm)
- Tương tự: Tứ giác ABCE có
- AB=CE (cmt)
- AB // CE (cmt)
Vậy tứ giác ABCE là hình bình hành (đpcm)
a) Xét tứ giác ABED có
AB//ED
AB=ED
Do đó: ABED là hình bình hành
Suy ra: Hai đường chéo AE và BD cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của AE