Cho ΔABC có \(\widehat{B}=2\widehat{C}\) , AB=8cm, BC=10cm
a, Tính AC
b, Nếu ba cạnh của tam giác trên là ba số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào đây - Câu hỏi của Trần Thiên Kim - Toán lớp 8 | Học trực tuyến
\(\Leftrightarrow\frac{AB}{AI}=\frac{BC}{IC}=\frac{AB+BC}{AI+IC}=\frac{18}{AC}\Rightarrow AI=\frac{AB.AC}{18}=\frac{4}{9}.AC\)
tgiac ABC đồng dạng AIB( chung A, ABI=ACB)
\(\Rightarrow\frac{AB}{AC}=\frac{AI}{AB}\Leftrightarrow\frac{8}{AC}=\frac{\frac{4}{9}.AC}{8}\Rightarrow\frac{4}{9}AC^2=64\)
Giải AC
Kẻ tia phân giác BK cắt AC tại K
\(\Rightarrow\widehat{ABK}=\widehat{CBK}=\dfrac{\widehat{ABC}}{2}\)
Mà ta có \(\widehat{B}=2\widehat{C}\)
Suy ra \(\widehat{ABK}=\widehat{KBC}=\widehat{KCB}\)
Xét △BKC có
\(\widehat{KBC}=\widehat{KCB}\)(cmt)
Suy ra △BKC cân tại K\(\Rightarrow BK=KC\)
Xét △ABK và △ACB có
\(\widehat{A}\) chung
\(\widehat{ABK}=\widehat{KCB}\)(cmt)
Suy ra △ABK ∼ △ACB(g.g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AC.BK=AB.BC\Rightarrow AC.BK=8.10=80\Rightarrow AC.KC=80\left(1\right)\)
Ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AC.AK=AB^2\Rightarrow AC.AK=8^2=64\left(2\right)\)
Cộng (1),(2)\(\Rightarrow AC.KC+AC.AK=80+64\Rightarrow AC\left(KC.AK\right)=144\Rightarrow AC.AC=144\Rightarrow AC^2=144\Rightarrow AC=12\left(cm\right)\)
b) Giả sử AC>BC>AB
Đặt AB=x(x∈N*)\(\Rightarrow BC=x+1\Rightarrow AC=x+2\)
Theo câu a, ta có △ABK ∼ △ACB
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AB.BC=BK.AC\Rightarrow AB.BC=KC.AC\Rightarrow x\left(x+1\right)=\left(x+2\right)KC\left(3\right)\)
ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AB^2=AK.AC\Rightarrow x^2=\left(x+2\right)AK\left(4\right)\)
Cộng (3),(4)\(\Rightarrow x\left(x+1\right)+x^2=\left(x+2\right)KC+\left(x+2\right).AK\Leftrightarrow x^2+x+x^2=\left(x+2\right)\left(KC+AK\right)\Leftrightarrow2x^2+x=\left(x+2\right).AC\Leftrightarrow2x^2+x=\left(x+2\right)^2\Leftrightarrow2x^2+x=x^2+4x+4\Leftrightarrow x^2-3x-4=0\Leftrightarrow x^2+x-4x-4=0\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Vậy x=4\(\Rightarrow AB=4\Rightarrow BC=5\Rightarrow AC=6\)