K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDEN vuông tại N và ΔDFM vuông tại M có 

DE=DF(ΔDEF cân tại D)

ˆEDNEDN^ chung

Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)

Suy ra: DN=DM(hai cạnh tương ứng)

Xét ΔDEF có 

DMDE=DNDF(DM=DN;DE=DF)DMDE=DNDF(DM=DN;DE=DF)

nên MN//EF(Định lí Ta lét đảo)

Xét tứ giác EMNF có MN//EF(Cmt)

nên EMNF là hình thang

mà ˆMEF=ˆNFEMEF^=NFE^(ΔDEF cân tại D)

nên EMNF là hình thang cân

a) Xét ΔDEN vuông tại N và ΔDFM vuông tại M có 

DE=DF(ΔDEF cân tại D)

\(\widehat{EDN}\) chung

Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)

Suy ra: DN=DM(hai cạnh tương ứng)

Xét ΔDEF có 

\(\dfrac{DM}{DE}=\dfrac{DN}{DF}\left(DM=DN;DE=DF\right)\)

nên MN//EF(Định lí Ta lét đảo)

Xét tứ giác EMNF có MN//EF(Cmt)

nên EMNF là hình thang

mà \(\widehat{MEF}=\widehat{NFE}\)(ΔDEF cân tại D)

nên EMNF là hình thang cân

b) Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

DM=DN(cmt)

Do đó: ΔDMH=ΔDNH(cạnh huyền-cạnh góc vuông)

c) Ta có: ΔDMH=ΔDNH(cmt)

nên HM=HN(hai cạnh tương ứng)

Ta có: DM=DN(cmt)

nên D nằm trên đường trung trực của MN(1)

Ta có: HM=HN(cmt)

nên H nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra DH là đường trung trực của MN

hay DH\(\perp\)MN

5 tháng 5 2017

Chứng minh được AI là đường trung tuyến của tam giác ABC, từ đó IE = IF.

NM
22 tháng 10 2021

ta có:

undefined

22 tháng 10 2021

Hình tự vẽ nha.

Lời giải:

+ Xét\(\Delta AHB\)\(\Delta AKC\)có:

\(\widehat{AHB}=\widehat{AKC}=90^0\)

\(AB=AC\)(Do\(\Delta ABC\)cân tại A)

\(\widehat{HAB}=\widehat{KAC}\)

Do đó:\(\Delta AHB=\Delta AKC\)(g-c-g)

\(\Rightarrow AH=AK\)

\(\Rightarrow\Delta AHK\)cân tại A

\(\Rightarrow\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(Do\(\Delta ABC\)cân tại A)

\(\Rightarrow\widehat{AKH}=\widehat{ABC}\)

\(\Rightarrow HK//BC\)

+Xét tứ giác BCKH có\(HK//BC\)

=> BCHK là hình thang

\(\widehat{B}=\widehat{C}\)(Do\(\Delta ABC\)cân tại A)

=> BCHK là hình thang cân (đpcm)

Vậy BCHK là hình thang cân

1 tháng 9 2019

Chứng minh DBKC = DCHB (ch-gnh)

Suy ra CK = BH & AK = AH

A K H ^ = 180 0 − K A H ^ 2 = A B C ^    h a y   K H / / B C .

Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC
góc A chung

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

Xét ΔABC có AH/AC=AK/AB

nên HK//BC

=>BKHC là hình thang

mà BH=CK

nên BKHC là hình thang cân

Bài 6: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK và HB=KC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)

Do đó: KH//BC

Xét tứ gác BKHC có KH//BC

nên BKHC là hình thang

mà KC=BH

nên BKHC là hình thang cân

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

Xét ΔABC có 

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

Do đó: HK//BC

Xét tứ giác BCHK có HK//BC

nên BCHK là hình thang

mà HB=KC(ΔAHB=ΔAKC)

nên BCHK là hình thang cân

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB