Chứng tỏ rằng 2 số tự nhiên liên tiếp lớn hơn 0 là hai số nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi hai số tự nhiên liên tiếp là a và a+1 (a#0)
gọi UCLN(a;a+1) là d
ta có : a chia hết cho d
a+1 chia hét cho d
=>(a+1)-a chia hết cho d
=>1 chia hết cho d
=>d=1
vậy UCLN(a;a+1)=1
vậy a và a+1 nguyeent ố cùng nhau
=>dpcm
Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3 và ƯCLN(2k+1;2k+3)=d
\(\Rightarrow\)2k+1 chia hết cho d và 2k+3 chia hết cho d
\(\Rightarrow\)(2k+1) - (2k+3) chia hết cho d
\(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)ƯCLN(2k+1;2k+3) thuộc 1 hoặc 2
Vì 2k+1 và 2k+3 là số lẻ nên d là số lẻ. \(\Rightarrow d=1\)
\(\Rightarrow\)ƯCLN(2k+1;2k+3)=1
Vậy 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
Tham khảo:
Câu hỏi của Võ thanh Hương - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của hoàng vũ - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của tiên nữ giáng trần - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Pham Quynh Trang - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Ngọc Nguyễn Minh - Toán lớp 6 - Học toán với OnlineMath
Nguyễn Công Tỉnh (Box Tiếng Anh):Rút kinh nghiệm lần sau chỉ cần đưa 1 link thôi bạn.Bài nào chả đúng :D =))
Bài giải
Gọi hai số tự nhiên đó là n + 1; n + 2
Gọi (n+1;n+2) = d
Ta có \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\).Do d = 1 nên n + 1; n + 2 nguyên tố cùng nhau (đpcm)
Đặt 2 số đó là n và n+1.
Gọi ƯCLN(n; n+1) là d. Ta có:
n chia hết cho d
n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n; n+1) = 1
=> n và n+1 nguyên tố cùng nhau
=> 2 số tự nhiên liên tiếp nguyên tố cùng nhau (Đpcm)
Đặt 2 số đó là n và n+1
Gọi ƯCLN(n;n+1) là d ,ta có:
n chia hết cho d
n+1 chia hết cho d
n+1-n chia hết cho d
1 chia hết cho d
d=1
ƯCLN(n;n+1)=1
n va n+1 nguyên tố cùng nhau
2 số tự nhiên liên tiếp nguyên tố cùng nhau (đpcm)
****
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
Gọi 2 số tự nhiên liên tiếp là a và b (a \(\in\) N*)
Đặt (a; b) = d (d \(\in\) N*)
=> d \(\in\) ƯC(a; b) (1)
Mà a - b = 1 => a = b + 1
do đó (b + 1; b) = d
=> d \(\in\) ƯC(b + 1 ; b) (2)
Từ (1) và (2) => d \(\in\) Ư(1). Vì d > 0 nên d = 1
Vậy 2 số tự nhiên liên tiếp lớn hơn 0 nguyên tố cùng nhau
Gọi 2 số tự nhiên đó là: n; n+1 và d là ƯC(n;n+1) (n;n+1;d \(\in\)N*)
=>n+1 chia hết cho d
n chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d\(\in\)Ư(1)={1;-1}
=>n;n+1 là 2 số nguyên tố cùng nhau
Vậy 2 số tự nhieen liên tiếp lớn hơn 0 là hai số nguyên tố cùng nhau