Bài 2: Tìm x, biết
a) /\(\frac{2}{x+4}\)/ = \(\frac{3}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
d) \(\Rightarrow\left(x-7\right)\left(3x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\\ c,\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
a: =>1/3(2x-5)=-2/3-3/2=-4/6-9/6=-13/6
=>2x-5=-13/6*3=-13/2
=>2x=-3/2
=>x=-3/4
b: =>2/5x=-3/4-1/2=-5/4
=>x=-5/4:2/5=-5/4*5/2=-25/8
a)
\(-\dfrac{2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{3}\left(2x-5\right)=-\dfrac{2}{3}-\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{3}\left(2x-5\right)=-\dfrac{13}{6}\\ \Rightarrow2x-5=-\dfrac{13}{6}:\dfrac{1}{3}=-\dfrac{13}{2}\\ \Rightarrow2x=-\dfrac{13}{2}+5\\ \Rightarrow2x=-\dfrac{3}{2}\\ \Rightarrow x=-\dfrac{3}{2}:2\\ \Rightarrow x=-\dfrac{3}{4}\)
b)
\(\dfrac{2}{5}x+\dfrac{1}{2}=-\dfrac{3}{4}\\ \Rightarrow\dfrac{2}{5}x=-\dfrac{3}{4}-\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{5}x=-\dfrac{5}{4}\\ \Rightarrow x=-\dfrac{5}{4}:\dfrac{2}{5}=-\dfrac{25}{8}\)
Bài 1:
\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{1}{\frac{1}{2}}+3\) \(=2+3\) \(=5\)
Vậy B=5
Bài 2:
a) x3 - 36x = 0
=> x(x2-36)=0
=> x(x2+6x-6x-36)=0
=> x[x(x+6)-6(x+6) ]=0
=> x(x+6)(x-6)=0
\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)
Vậy x=0; x=-6; x=6
b) (x - y = 4 => x=4+y)
x−3y−2 =32
=>2(x-3) = 3(y-2)
=>2x-6= 3y-6
=>2x-3y=0
=>2(4+y)-3y=0
=>8+2y-3y=0
=>8-y=0
=>y=8 (thỏa mãn)
Do đó x=4+y=4+8=12 (thỏa mãn)
Vậy x=12 và y =8
B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4 1/5 - 1/8
B= 1/ 1/2 + 3
B= 2+3
B=5
B2:
a) x^3 - 36x = 0
x(x^2 - 36) = 0
=> x=0 hoặc x^2-36=0
=> x= 0 hoặc x^2=36
=> x=0 hoặc x= +- 6
a: =>2x=-18+5=-13
=>x=-13/2
b: =>3^x-1=81
=>x-1=4
=>x=5
c: =>4(5-x)=24
=>5-x=6
=>x=-1
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Bài 1
a) \(x=x^5\)
\(x^5-x=0\)
\(x\left(x^4-1\right)=0\)
\(x=0\) hoặc \(x^4-1=0\)
* \(x^4-1=0\)
\(x^4=1\)
\(x=1\)
Vậy x = 0; x = 1
b) \(x^4=x^2\)
\(x^4-x^2=0\)
\(x^2\left(x^2-1\right)=0\)
\(x^2=0\) hoặc \(x^2-1=0\)
*) \(x^2=0\)
\(x=0\)
*) \(x^2-1=0\)
\(x^2=1\)
\(x=1\)
Vậy \(x=0\); \(x=1\)
c) \(\left(x-1\right)^3=x-1\)
\(\left(x-1\right)^3-\left(x-1\right)=0\)
\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)
*) \(x-1=0\)
\(x=1\)
*) \(\left(x-1\right)^2-1=0\)
\(\left(x-1\right)^2=1\)
\(x-1=1\) hoặc \(x-1=-1\)
**) \(x-1=1\)
\(x=2\)
**) \(x-1=-1\)
\(x=0\)
Vậy \(x=0\); \(x=1\); \(x=2\)
Ta có :
\(\left|\frac{2}{x+4}\right|=\frac{3}{5}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{x+4}=\frac{3}{5}\\\frac{2}{x+4}=\frac{-3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3.\left(x+4\right)=2.5\\-3.\left(x+4\right)=2.5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3.x+12=10\\-3.x-12=10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3.x=-2\\-3.x=22\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-22}{3}\end{cases}}\)