K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

Không c/m được a^4 - b^4 chia hết cho 5 đâu bạn ạ vì đơn giản không phải nó luôn đúng nhưng nếu c/m ab(a^4 - b^4) chia hết cho 5 với a, b là số nguyên thì c/m được đó bạn ạ! 
~~~~~~~ 
Bạn biến đổi: ab(a^4 - b^4) = ab[(a^4 - 1) - (b^4 - 1)] 
= ab(a - 1)(a + 1)(a² + 1) - ab(b - 1)(b + 1)(b² + 1). 
Sau đó bạn xét các trường hợp của a, b như chia hết cho 5, chia 5 dư 1, -1, 2, -2 để c/m a(a - 1)(a + 1)(a² + 1) chia hết cho 5, ab(b - 1)(b + 1)(b² + 1) chia hết cho 5 => ab(a - 1)(a + 1)(a² + 1) - ab(b - 1)(b + 1)(b² + 1) chia hết cho 5 hay ab(a^4 - b^4) chia hết cho 5 (đpcm). 
~~~~~~~~ 

20 tháng 11 2018

Nếu a , b chia hết cho 5 

Áp dụng công thức chia hết cho 5 dưới dạng 5k

=> a4+b4 = a.a.a.a + b.b.b.b  chia hết cho 5

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

10 tháng 8 2023

a) \(A=10^{100}+5\)

- Tận cùng A là số 5 \(\Rightarrow A⋮5\)

- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)

\(\Rightarrow dpcm\)

b) \(B=10^{50}+44\)

- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)

- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)

\(\Rightarrow dpcm\)

23 tháng 10 2023

a) A = 4 + 4² + 4³ + ... + 4¹²

= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4

Vậy A ⋮ 4

b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²

= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)

= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)

= 4.5 + 4³.5 + ... + 4¹¹.5

= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5

Vậy A ⋮ 5

c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²

= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)

= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)

= 4.21 + 4⁴.21 + ... + 4¹⁰.21

= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21

Vậy A ⋮ 21

11 tháng 8 2023

a/

\(\dfrac{2n+9}{n+1}=\dfrac{2\left(n+1\right)+7}{n+1}=2+\dfrac{7}{n+1}\)

\(\Rightarrow n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-8;-2;0;6\right\}\)

b/

\(\dfrac{3n+5}{n-1}=\dfrac{3\left(n-1\right)+8}{n-1}=3+\dfrac{8}{n-1}\)

\(\Rightarrow n-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow n=\left\{-7;-3;-1;0;2;5;9\right\}\)

31 tháng 10 2023

Vì x⋮6;x⋮24;x⋮40

→xϵ BC[6;24;40]

TA CÓ:

6=2.3

24=23.3

40=23.5

→BCNN[6;24;40]=23.3.5=60

BC[6;24;40]=B[60]={1;2;3;4;5;6;10;12;15;20;30;60}

hay x ϵ {1;2;3;4;5;6;10;12;15;20;30;60}

CÂU SAU TRÌNH BÀY NHƯ THẾ NHƯNG LÀ ƯỚC THÔI !

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 9 2017

ko hiểu

=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)

=>5(a^3+b^3+c^3+d^3) chia hết cho 6

=>a^3+b^3+c^3+d^3 chia hêt cho 6

a^3-a=a(a+1)(a-1) chia hết cho 3!=6

b^3-b=b(b+1)(b-1) chia hết cho 3!=6

c^3-c=c(c+1)(c-1) chia hết cho 3!=6

d^3-d=d(d+1)(d-1) chia hết cho 3!=6

=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6

=>a+b+c+d chia hết cho 6

a,  b : 7 dư 4 ; c chia 7 dư 3 mà 4 + 3 = 7 chia hết cho 7 

=> b+c chia hết cho 7 

b, ( tương tự dựa vào đó mà lm nhé mày ) biết chưa quỷ cái