cộng trừ các phân thức
\(\frac{2x^2-11x}{2xy}+\frac{5y-x}{y}+\frac{x+2y}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: !x! khác !y!
\(B=\frac{x^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2xy^2}{\left(x-y\right)^2\left(x+y\right)^2}+\frac{y^2}{\left(x-y\right)\left(x+y\right)^2}\) =>\(MSC=\left(x-y\right)^2\left(x+y\right)^2\)
\(B=\frac{x^2\left(x+y\right)-2xy^2+y^2\left(x-y\right)}{MSC}=\frac{x^3+x^2y-2xy^2+y^2x-y^3}{MSC}=\frac{x^3+x^2y-xy^2-y^3}{MSC}\)
\(B=\frac{x^3+x^2y-xy^2-y^3}{MSC}=\frac{x^2\left(x+y\right)-y^2\left(x+y\right)}{MSC}=\frac{\left(x+y\right)^2\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)^2}=\frac{1}{x-y}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
ko ghi đề bài nha làm luôn
a) \(\frac{\left(2x+2y\right)+\left(5x+5y\right)}{\left(2x+2y\right)-\left(5x+5y\right)}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\frac{\left(2+5\right)\left(x+y\right)}{\left(2-5\right)\left(x+y\right)}=\frac{-7}{3}\)
b)\(\frac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\frac{4x}{5x^2}=\frac{4}{5x}\)
\(x+y+\frac{3x^2}{2y}\)
\(=\frac{2xy}{2y}+\frac{2y^2}{2y}+\frac{3x^2}{2y}=\frac{2xy+2y^2+3x^2}{2y}=\frac{2y.\left(2x+y\right)+3x^2}{2y}=\frac{2x+y+3x^2}{2y}\)
p/s: mới lớp 7 ạ sai sót bỏ qua nha :>
\(\frac{2x^2-11x}{2xy}+\frac{5y-x}{y}+\frac{x+2y}{x}\)
\(=\frac{2x^2-11x+\left(5y-x\right)2x+\left(x+2y\right)2y}{2xy}\)
\(=\frac{2x^2-11x+10xy-2x^2+2xy+4y^2}{2xy}=\frac{12xy-11x+4y^2}{2xy}\)