a+b+c = 4 ; a,b,c >0
Tìm GTNN của :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+a\right)\left(c^2+a^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn vào fx viết đề cho rõ nhé :))
\(Gt\Leftrightarrow a^2+b^2+ab=c^2+d^2+cd\)
Bình 2 vế đc:
\(a^4+b^4+2a^3b+2ab^3+3a^2b^2\)\(=c^4+d^4+2c^3d+2cd^3+3c^2d^2\)
\(\Leftrightarrow2\left(a^4+b^4+2a^3b+2ab^3+3a^2b^2\right)\)\(=2\left(c^4+d^4+2c^3d+2cd^3+3c^2d^2\right)\)
\(\Leftrightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
a/b=c/d=k
=> a=bk, c=dk
thế vào các biểu thức đó rồi sử dụng phân phối
Trước tiên ta đi chứng minh BĐT phụ là:
Với a,b>0�,�>0 thì a2+b4≥ab(a2+b2)�2+�4≥��(�2+�2)
Cách CM:
BĐT trên tương đương với: (a−b)2(a2+ab+b2)≥0(�−�)2(�2+��+�2)≥0 (luôn đúng)
Quay trở về bài toán chính: Áp dụng BĐT phụ trên :
⇒ca4+b4+c≤cab(a2+b2)+c2ab=cab(a2+b2+c2)=c2a2+b2+c2⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
⇒T≤a2+b2+c2a2+b2+c2=1⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)
Dấu bằng xảy ra khi a=b=c=1
a, \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left(c-b\right)+c^2a^2\left[\left(c-b\right)-\left(a-b\right)\right]\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left(c-b\right)+c^2a^2\left(c-b\right)-c^2a^2\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2b^2-c^2a^2\right)-\left(c-b\right)\left(b^2c^2-c^2a^2\right)\)
\(=\left(a-b\right)a^2\left(b-c\right)\left(b+c\right)-\left(b-c\right)c^2\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-c^2a-c^2b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[ac\left(a-c\right)+b\left(a-c\right)\left(a+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ac+ab+bc\right)\)
b, \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=a^4\left(b-a+a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=a^4\left(b-a\right)+a^4\left(a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=\left(a-b\right)\left(c^4-a^4\right)+\left(a-c\right)\left(a^4-b^4\right)\)
\(=\left(a-b\right)\left(c^2-a^2\right)\left(c^2+a^2\right)+\left(a-c\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left[\left(a+b\right)\left(a^2+b^2\right)-\left(c+a\right)\left(c^2+a^2\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[a^3+ab^2+a^2b+b^3-c^3-a^2c-ac^2-a^3\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[a^2\left(b-c\right)+a\left(b^2-c^2\right)+\left(b^3-c^3\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[a^2+a\left(b+c\right)+b^2+bc+c^2\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[a^2+b^2+c^2+ab+bc+ca\right]\)
Lời giải:
Xét hiệu:
\(2(a^4+c^4)-(a^3+c^3)(a+c)=2(a^4+c^4)-(a^4+a^3c+ac^3+c^4)\)
\(=a^4+c^4-a^3c-ac^3=(a-c)(a^3-c^3)=(a-c)^2(a^2+ac+c^2)\geq 0\)
với mọi \(a,c>0\)
Do đó: \(2(a^4+c^4)\geq (a^3+c^3)(a+c)\Leftrightarrow \frac{a^4+c^4}{a^3+c^3}\geq \frac{a+b}{2}\)
Hoàn toàn tương tự ta có:
\(\left\{\begin{matrix}
\frac{b^4+c^4}{b^3+c^3}\geq \frac{b+c}{2}\\
\frac{a^4+b^4}{a^3+b^3}\geq \frac{a+b}{2}\end{matrix}\right.\)
Cộng theo vế các BĐT thu được:
\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\geq \frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c=2018\)
Ta có đpcm.
Dấu bằng xảy ra khi $a=b=c=\frac{2018}{3}$
\(\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge2018\)
\(\Leftrightarrow\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge a+b+c\)
\(\LeftrightarrowΣ_{cyc}\dfrac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)\left(\dfrac{a^3}{c^3+a^3}-\dfrac{b^3}{b^3+c^3}\right)\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\dfrac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)
Dễ thấy BĐT cuối luôn đúng nên ta có ĐPCM
Dấu "=" <=> \(a=b=c=\dfrac{2018}{3}\)
Lời giải:
Xét:
\(\frac{a^4}{(a+b)(a^2+b^2)}+\frac{b^4}{(b+c)(b^2+c^2)}+\frac{c^4}{(c+a)(c^2+a^2)}-\left[\frac{b^4}{(a+b)(a^2+b^2}+\frac{c^4}{(b+c)(b^+c^2)}+\frac{a^4}{(c+a)(c^2+a^2)}\right]\)
\(=\frac{a^4-b^4}{(a+b)(a^2+b^2)}+\frac{b^4-c^4}{(b+c)(b^2+c^2)}+\frac{c^4-a^4}{(c+a)(c^2+a^2)}=a-b+b-c+c-a=0\)
\(\Rightarrow \frac{a^4}{(a+b)(a^2+b^2)}+\frac{b^4}{(b+c)(b^2+c^2)}+\frac{c^4}{(c+a)(c^2+a^2)}=\frac{b^4}{(a+b)(a^2+b^2}+\frac{c^4}{(b+c)(b^+c^2)}+\frac{a^4}{(c+a)(c^2+a^2)}\)
\(\Rightarrow 2P=\frac{a^4+b^4}{(a+b)(a^2+b^2)}+\frac{b^4+c^4}{(b+c)(b^2+c^2)}+\frac{c^4+a^4}{(c+a)(c^2+a^2)}\)
Áp dụng hệ quả quen thuộc của BĐT AM-GM: \(x^2+y^2\geq \frac{(x+y)^2}{2}\) ta có:
\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\)
\(a^2+b^2\geq \frac{(a+b)^2}{2}\)
\(\Rightarrow a^4+b^4\geq \frac{(a^2+b^2).\frac{(a+b)^2}{2}}{2}=\frac{(a^2+b^2)(a+b)^2}{4}\)
\(\Rightarrow \frac{a^4+b^4}{(a+b)(a^2+b^2)}\geq \frac{a+b}{4}\). Tương tự với các phân thức còn lại:
\(\Rightarrow 2P\geq \frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}=2\)
\(\Rightarrow P\geq 1\). Vậy \(P_{\min}=1\Leftrightarrow a=b=c=\frac{4}{3}\)
\(a=b=c=\dfrac{4}{3}\Rightarrow P=1\)
Ta se cm \(P=1\) la GTNN cua P hay \(Σ\dfrac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge1\)
C-S: \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{Σ\left(a+b\right)\left(a^2+b^2\right)}\)
Hay ta can cm bdt \(\dfrac{\left(a^2+b^2+c^2\right)^2}{Σ\left(a+b\right)\left(a^2+b^2\right)}\ge1=\dfrac{a+b+c}{4}\)
\(\Leftrightarrow4\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)\left(Σ\left(a+b\right)\left(a^2+b^2\right)\right)\)
\(\LeftrightarrowΣ\left(a-b\right)^2\left(a^2+b^2+c^2-ab\right)\ge0\)