Giải phương trình: \(\sqrt{3x^2-7x+5}-\sqrt{x^2+2}=\sqrt{3x^2-5x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(pt\Leftrightarrow\left(\sqrt{3x^2-7x+3}-1\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3x^2-5x-1}-1\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)
\(\Leftrightarrow\dfrac{3x^2-7x+3-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\dfrac{3x^2-5x-1-1}{\sqrt{3x^2-5x-1}+1}-\dfrac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)
\(\Leftrightarrow\dfrac{3x^2-7x+2}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x^2-5x-2}{\sqrt{3x^2-5x-1}+1}+\dfrac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)\left(3x-1\right)}{\sqrt{3x^2-7x+3}+1}-\dfrac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x-1}+1}+\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)
Dễ thấy: \(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)