Một đám đất hình chữ nhật dài 52m rộng 36m.Người ta muốn chia đám đất thành những khoảng hình vuông (số đo cạnh là số tự nhiên) bằng nhau để trồng các loại rau.Hỏi với cách chia nào thì cạnh hình vuông là lớn nhất và bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là cạnh hình vuông lớn nhất
=> a là ƯCLN(52,36)
Ta có :
52=2^2.13
36=2^2.3^2
=> ƯCLN(52,36)=2^2=4
Vậy độ dài lớn nhất của cạnh hình vuông là 4m
Gọi cạnh hình vuông lớn nhất là a
Theo bài ra ta có :
52 chia hết cho a ; 36 chia hết cho a ; a là số lớn nhất
\(\Rightarrow\) a \(\in\) ƯCLN(52;36)
52 = 22 .13
36 = 22.32
=> ƯCLN(52;36) = 22 =4
Vậy cạnh hình vuông lớn nhất là 4m
Click vào trong câu hỏi tương tự nha bạn !
Lời giải:
Gọi độ dài cạnh hình vuông là $x$ (m)
Để chia đám đất hcn kia thành các hình vuông bằng nhau thì:
$52\vdots x, 36\vdots x$ hay $x$ là ƯC$(36,52)$
Để $x$ lớn nhất thì $x=ƯCLN(36,52)$
Ta thấy:
$36=2^2.3^2$
$52=2^2.13$
$\Rightarrow x=ƯCLN(36,52)=2^2=4$ (m)
Vậy cạnh hình vuông lớn nhất là $4$ (m)
Gọi x là cạnh hình vuông lớn nhất .
Theo đề bài ta có : Để thõa mãn đề bài : 52 : x ; 36 : x ( x là số lớn nhất ) ( 1 )
=> x là ƯCLN ( 52 ; 36 ) 52 = 22 x 13
36 = 22 x 32 ƯCLN ( 52 ; 36 ) = 22 = 4
Vậy với cách chia có độ dài là 4m là lớn nhất
Gọi x là cạch hình vuông lớn nhất
Theo đề ta có:
Để thỏa mãn đề bài:
52:x; 36:x với x là số lớn nhất (1)
=>x là ước chung lớn nhất của 52;36
52=2^2.13
36=2^2.3^3
=>ƯCLN (52;36)=2^2=4
Vậy với cách chia có độ dài là 4m là số lớn nhất
Gọi x là cạnh hình vuông lớn nhất .
Theo đề bài ta có : Để thõa mãn đề bài : 52 : x ; 36 : x ( x là số lớn nhất ) ( 1 )
=> x là ƯCLN ( 52 ; 36 ) 52 = 22 x 13
36 = 22 x 32 ƯCLN ( 52 ; 36 ) = 22 = 4
Vậy với cách chia có độ dài là 4m là lớn nhất