K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

\(\Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\Leftrightarrow198x=196x+98\\ \Leftrightarrow2x=98\Leftrightarrow x=49\)

15 tháng 10 2022

Nguyễn Hoàng Minh cho hỏi 2x + 1 - 1 đâu ra v ạ??

23 tháng 11 2021

\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)

23 tháng 11 2021

Em cảm ơn.

17 tháng 8 2018

a, \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)

\(\Leftrightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)

\(\Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)

\(\Leftrightarrow98\left(2x+1\right)=99.2x\)

\(\Leftrightarrow2x=98\Rightarrow x=49\)

b: Đặt \(A=1-3+3^2-3^3+...+\left(-3\right)^x\)

\(=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^x\)

\(\Leftrightarrow-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}\)

\(\Leftrightarrow-3A-A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}-...-1\)

\(\Leftrightarrow-4A=\left(-3\right)^{x+1}-1\)

\(\Leftrightarrow A=\dfrac{\left(-3\right)^{x+1}-1}{-4}=\dfrac{-\left(-3\right)^{x+1}+1}{4}\)

\(\Leftrightarrow\dfrac{-\left(-3\right)^{x+1}+1}{4}=\dfrac{3^{2012}-1}{2}\)

\(\Leftrightarrow-\left(-3\right)^{x+1}+1=2\cdot3^{2012}-2\)

\(\Leftrightarrow-\left(-3\right)^{x+1}=2\cdot3^{2012}-3\)

\(\Leftrightarrow-\left(-3\right)^{x+1}=3\left(2\cdot3^{2011}-1\right)\)

\(\Leftrightarrow-\left(-3\right)^x=2\cdot3^{2011}-1\)

=>x=2010

30 tháng 10 2017

\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\\ \Leftrightarrow2\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}\right)=2\cdot\dfrac{49}{99}\\ \Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=1-\dfrac{1}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Rightarrow2x+1=99\\ \Leftrightarrow2x=98\\ \Leftrightarrow x=49\)

20 tháng 8 2023

\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{49}{99}\)

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{98}{99}\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\)

\(1-\dfrac{1}{2x+1}=\dfrac{98}{99}\)

\(\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)

\(\dfrac{2x}{2x+1}=\dfrac{98}{99}\)

=> 2x=98

=> x=49

21 tháng 3 2017

a, đặt đề bài là A

Ta có : A=( 1-1/2+1/2-1/3+...+1/9-1/10).(x-1)+1/10.x=x-9/10

= (1-1/10).(x-1)+1/10.x

= 9/10 .( x-1 )+1/10.x

=1.x-9/10

nên x= 0 hoặc 1

21 tháng 3 2017

với -1 nữa nha

quy luật lạ z:v lúc đầu nhân lúc sau cộng:v

11 tháng 5 2022

mk 0 bt ;-;

cái này trong đề thi cũa mk

bây h thi xg òi ;vv

28 tháng 3 2017

b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)

Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)

Thay (1) vào đề bài:

\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)

\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)

\(\Rightarrow49x+\dfrac{16}{99}=50x\)

\(\Rightarrow x=\dfrac{16}{99}\)

Vậy \(x=\dfrac{16}{99}.\)

28 tháng 3 2017

thank bn nhìu nhìu vui