Cho 10 điểm không thẳng hàng, vẽ các đường thẳng đi qua 2 điểm. Hỏi có bao nhiêu đường thẳng được vẽ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Nếu trong 6 điểm đó không có ba điểm nào thẳng hàng thì sẽ vẽ được số đường thẳng là
\(\frac{6.\left(6-1\right)}{2}=\frac{6.5}{2}=15\)(đường thẳng)
b) Nếu 100 điểm trong đó không có 3 điểm nào thẳng hàng thì vẽ được số đường thẳng đi qua các cặp điểm là:
\(\frac{100.\left(100-1\right)}{2}=4950\)(đường thẳng)
a) =45( đường thẳng)
b)=43(đường thẳng)
**** cho mình nhé
Số đường thẳng vẽ được qua các cặp điểm lúc ban đầu là n . n − 1 2 .
Nếu bớt đi một điểm thì số đường thẳng vẽ được qua các cặp điểm về sau là n − 1 . n − 2 2 .
Theo bài ra ta có: n . n − 1 2 − n − 1 . n − 2 2 = 10
⇔ n − 1 . n − n − 2 = 20 ⇔ n − 1 . 2 = 20 ⇔ n − 1 = 10 ⇔ n = 11
Vậy số điểm lúc đầu là 11.
a) Chọn một điểm trong năm điểm đã cho thì ta nối điểm đó với 4 điểm còn lại tạo thành 4 đường thẳng. Làm như vậy với tất cả 5 điểm ta được 4.5 = 20 đường thẳng. Khi đó, mỗi đường thẳng được tính 2 lần (ví dụ đường thẳng AB và đường thẳng BA chỉ là một). Do đó, số đường thẳng thực tế là 20:2 = 10.
b) Lập luận tương tự ý a), thay số 5 bằng n. Ta có số đường thẳng là n ( n − 1 ) 2
Có : \(\frac{10.\left(10-1\right)}{2}=45\)( đường thẳng )