Cho A = 5 + 52 + 53 + … + 52017 . Tìm x để 4A + 5 = 5 . Mọi người giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có A = 21 + 22 + 23 + ... + 22022
2A = 22 + 23 + 24 + ... + 22023
2A - A = ( 22 + 23 + 24 + ... + 22023 ) - ( 21 + 22 + 23 + ... + 22022 )
A = 22023 - 2
Lại có B = 5 + 52 + 53 + ... + 52022
5B = 52 + 53 + 54 + ... + 52023
5B - B = ( 52 + 53 + 54 + ... + 52023 ) - ( 5 + 52 + 53 + ... + 52022 )
4B = 52023 - 5
B = \(\dfrac{5^{2023}-5}{4}\)
b) Ta có : A + 2 = 2x
⇒ 22023 - 2 + 2 = 2x
⇒ 22023 = 2x
Vậy x = 2023
Lại có : 4B + 5 = 5x
⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x
⇒ 52023 - 5 + 5 = 5x
⇒ 52023 = 5x
Vậy x = 2023
a) \(B=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow5B=5^2+5^3+5^4+...+5^{2023}\)
\(\Rightarrow4B=5^{2023}-5\)
b) \(4B+5=5^X\)
Hay \(5^{2023}-5+5=5^X\)
\(5^{2023}=5^x\)
\(\Rightarrow x=2023\)
B = 5 + 52 + 53 +...+ 52022
5.B = 52 + 53 +....+ 52023
5B- B = 52023 - 5
4B = 52023 - 5
b, 4B + 5 = 5\(^x\) ⇒ 52023 - 5 + 5 = 5\(^x\)
5\(^{2023}\) = 5\(x\)
\(x\) = 2023
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
4a+5 chia hết cho 2a+1
<=> 4a+2+3 chia hết cho 2a+1
<=> 2(2a+1)+3 chia hết cho 2a+1
<=> 3 chia hết cho 2a+1
=> 3a+1 thuộc Ư(3)={-1,-3,1,3}
3a+1 | -1 | -3 | 1 | 3 |
a | -2/3 | -4/3 | 0 | 2/3 |
Vậy a=0 sẽ thõa mãn a là số nguyên
4a+5=4a+2+3 chia hết cho 2a+1
=> 3 chia hết cho 2a+1
=>2a+1 thuộc Ư(3)=(-1;-3;1;3)
ta có bảng sau
2a+1 | 1 | 3 | -1 | -3 |
a | 0 | 1 | -1 | -2 |
vậy a có các số nguyên 0;1;-1;-2. thỏa mãn
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
biểu thức đó = (a-2)(a-1)a(a+1)(a+2)
Trong 5 số nguyên liên tiếp tồn tại 1 số chia hết cho 3, 1 số chia hết cho 5, có 2 số chẵn, trong đó 1 số chia hết cho 2, 1 số chia hết cho 4
Vậy tích của chúng chia hết cho 3.5.2.4= 120
ok nhé bn!!!!! 45436545475966264634657856321423434546545476879
x ở đâu ?
nhầm 4A + 5 = 5x nhé