chứng minh rằng : ( 22225555 + 55552222 ) chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
ta có : \(2222\equiv3\)( mod 7 ) \(2222\equiv-4\) ( mod 7 ) ;
\(5555\equiv4\) ( mod 7 )
\(\Rightarrow\left(2222^{5555}+5555^{2222}\right)\equiv\left[\left(-4\right)^{5555}+4^{2222}\right]\) ( mod 7 )
\(\Rightarrow\left(2222^{5555}+5555^{2222}\right)\equiv-4^{2222}\left(4^{3333}-1\right)\) ( mod 7 )
Lại có : \(4^{3333}=\left(4^3\right)^{1111}=64^{1111}\) mà \(64\equiv1\) ( mod 7 ) nên \(4^{3333}\equiv1\) ( mod 7 )
\(\Rightarrow4^{3333}-1\equiv0\) ( mod 7 ) \(\Rightarrow-4^{2222}\left(4^{3333}-1\right)\equiv0\) ( mod 7 )
hay \(\left(2222^{5555}+5555^{2222}\right)⋮7\)
2222555522225555+ 5555222255552222 chia hết cho 7
Ta có : 2222 ≡ 3 (mod 7) (1)
⇒ 2222422224 ≡ 3434 (mod 7)
⇒ 2222422224 ≡ 81 (mod 7)
Mà 81 ≡ 4 (mod 7)
⇒ 2222422224 ≡ 4 (mod 7) (2)
Nhân (1) với (2) ta được:
⇒ 2222422224 . 2222 ≡ 4.3 (mod 7)
⇒ 2222522225 ≡ 12 (mod 7) ≡ 5 (mod 7)
⇒ 2222555522225555 ≡ 5111151111 (mod 7) (3)
Tương tự như vế trên ta được:
5555222255552222≡ 2111121111 (mod 7) (4)
Cộng vế (3) và (4) ta có:
2222555522225555+ 5555222255552222 ≡ 2111121111 + 5111151111 ( mod 7 ) (5)
Mặt khác: 2111121111 + 5111151111 ≡ 2+5 ( mod 7 ) ≡ 7 ( mod 7 ) ≡ 0 ( mod 7 ) (6)
Từ (5) ; (6) ⇒ 2222555522225555+ 5555222255552222≡ 0 ( mod 7 )
⇒ 2222555522225555+ 5555222255552222 chia hết cho 7 (đccm)