1.phân tích các đa thức sau thành nhân tử :
a, x^2+x+y^2+y+2xy;
c, -x^2+5x+2xy-5y-x^2;
d, x^2-y^2+2x+2;
e, x^2+2xz-y^2+2ty+z^2-t^2; 2.
2.ptdtstnt:
a, x^3-4x^2+4x-1;
b, x^3-3x^2+4x-2;
c, x^3-4x^2+5x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(x^2-2xy+y^2-16\)
\(=\left(x-y\right)^2-16\)
\(=\left(x-y-4\right)\left(x-y+4\right)\)
p/s: chúc bạn học tốt
\(x^2-2xy+y^2-16\)
\(\Rightarrow\left(x-y\right)^2-16\)
\(\Rightarrow\left(x-y-4\right)\left(x-y+4\right)\)
Code : Breacker
Ta có: \(x^2+2xy+y^2-9z^2=\) \(\left(x+y\right)^2-\left(3z\right)^2\)
\(=\left(x+y-3z\right)\left(x+y+3z\right)\)
\(x^2-2xy+y^2-6x+6y=\left(x-y\right)^2-6\left(x-y\right)=\left(x-y\right)\left(x-y-6\right)\)
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
a)
\(2x^2y-8xy^2\\ =2xy\left(x-4y\right)\)
b)
\(x^2-2xy+y^2-16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y-4\right)\left(x-y+4\right)\)
1) (x+y)^2 +(x+y) =(x+y)(x+y+1)
Bài 2:
a: =(x-1)(x^2+x+1)-4x(x-1)
=(x-1)(x^2-3x+1)
b: =x^3-x^2-2x^2+2x+2x-2
=(x-1)(x^2-2x+2)
c: \(=x^3-2x^2-2x^2+4x+x-2=\left(x-2\right)\left(x^2-2x+1\right)\)
=(x-2)(x-1)^2