K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

\(\frac{26^{2014}.12^{2014}}{24^{2015}.13^{2015}}=\frac{\left(26.12\right)^{2014}}{\left(24.13\right)^{2015}}=\frac{312^{2014}}{312^{2015}}=\frac{1}{312}\)

17 tháng 12 2014

bam vao may tinh thi ra

29 tháng 4 2016

bấm vào máy tính thì ra

13 tháng 1 2017

bạn xem lại đề thử có sai không?

13 tháng 1 2017

Ta có:

\(\frac{2015^2-2014^2}{2015^2+2014^2}-\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)

\(=\frac{2015+2014}{2015^2+2014^2}-\frac{1}{\left(2015+2014\right)^2}\)

Ta thấy phân số thứ nhất có tử lớn hơn phân số thứ 2 và có mẫu bé hơn nên phân số thứ nhất > phâm số thứ 2

Hay \(\frac{2015^2-2014^2}{2015^2+2014^2}>\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)

11 tháng 10 2015

Có Ta có\(VT=\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\frac{1}{\sqrt{2015}}+\sqrt{2014}+\frac{1}{\sqrt{2014}}.\)\(2014<2015\Leftrightarrow\sqrt{2014}<\sqrt{2015}\Leftrightarrow\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}\Leftrightarrow\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>0\Leftrightarrow VT>VP\)

 

 

24 tháng 3 2017

d) 0

23 tháng 9 2016

\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}\)

\(\sqrt{2014}+\sqrt{2015}+\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>\sqrt{2014}+\sqrt{2015}\)

23 tháng 6 2017

Đặt \(A=\frac{10}{11!}+\frac{11}{12!}+\frac{12}{13!}+...+\frac{2014}{2015!}\)

\(=\frac{11-1}{11!}+\frac{12-1}{12!}+\frac{13-1}{13!}+...+\frac{2015-1}{2015!}\)

\(=\frac{11}{11!}-\frac{1}{11!}+\frac{12}{12!}-\frac{1}{12!}+\frac{13}{13!}-\frac{1}{13!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)

\(=\frac{11}{10!.11}-\frac{1}{11!}+\frac{12}{11!.12}-\frac{1}{12!}+\frac{13}{12!.13}-\frac{1}{13!}+...+\frac{2015}{2014!.2015}-\frac{1}{2015!}\)

\(=\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+\frac{1}{12!}-\frac{1}{13!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)

\(=\frac{1}{10!}-\frac{1}{2015!}< \frac{1}{10!}\)