Tìm x thuộc Z để A thuộc Z
a) A=2x+3/2x-3 b) A=3/x^2+x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
a) \(A=\dfrac{x+3}{x+2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\)
\(\Rightarrow5⋮x-2\Rightarrow x-2\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\\x=7\\x=-3\end{matrix}\right.\)
b) \(B=\dfrac{1-2x}{x+3}=\dfrac{-2x+1}{x+3}\)
\(B\in Z\Rightarrow-2x+1⋮x+3\)
\(\Rightarrow-2x-6+7⋮x+3\)
\(\Rightarrow-2\left(x+3\right)+7⋮x+3\)
\(\Rightarrow7⋮x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3-1\\x+3=7\\x+3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\\x=4\\x=-10\end{matrix}\right.\)
\(A=\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\)
Để \(A\in Z\) thì \(x-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy \(x\in\left\{3;1;7;-3\right\}\) thì \(A\in Z\)
\(B=\dfrac{1-2x}{x+3}=\dfrac{-2x-6+7}{x+3}=\dfrac{-2\left(x+3\right)-7}{x+3}=-2+\dfrac{-7}{x+3}\)
Để \(B\in Z\) thì \(x+3\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;10\right\}\)
Vậy \(x\in\left\{-2;-4;4;10\right\}\) thì \(B\in Z\)
a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)
Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-3}{x-1}\)
b) Để A nguyên thì \(-3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)
\(A=\frac{2x+3}{2x-3}\)
\(A=\frac{2x-3+6}{2x-3}=1+\frac{6}{2x-3}\)
để \(A\in Z\Rightarrow\frac{6}{2x-3}\in Z\Rightarrow6⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(6\right)=\left\{\pm1,\pm2,\pm3,\pm6\right\}\)
vì 2x-3 là số lẻ
\(\Rightarrow2x-3=\left\{\pm1,\pm3\right\}\Rightarrow x=\left\{2,1,3,0\right\}\)