K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

\(x-\frac{15}{x}=2\Leftrightarrow\frac{x^2}{x}-\frac{15}{x}=\frac{2x}{x}\)

\(\Leftrightarrow\frac{x^2-15}{x}=\frac{2x}{x}\). Nhân cả hai vế với x để khử mẫu,ta có:

\(PT\Leftrightarrow x^2-15=2x\Leftrightarrow x^2-2x=15\)

\(\Leftrightarrow x\left(x-2\right)=15\Leftrightarrow x=\frac{15}{x-2}\)

\(\Leftrightarrow x;x-2\inƯ\left(15\right)\). Tới đây chia hai trường hợp ra được tập nghiệm của phương trình =)))

17 tháng 11 2018

\(x-\frac{15}{x}=2\)

\(\frac{x^2}{x}-\frac{15}{x}=2\)

\(\frac{x^2-15}{x}=2\)

\(\Rightarrow x^2-15=2x\)

\(\Rightarrow x^2-15-2x=0\)

\(\Rightarrow x^2-2x+1-16=0\)

\(\left(x-1\right)^2-4^2=0\)

\(\left(x-1-4\right)\left(x-1+4\right)=0\)

\(\left(x-5\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)

a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0

=>x^2-2x+1-2=0

=>(x-1)^2=2

=>\(x=\pm\sqrt{2}+1\)

b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

18 tháng 1 2017

1, 

tậ nhiệm là S = { R} R là tập số thực 

X = 0 

và X = X - 1 ko tương đương 

vì một bên x = 0 

một bên x= 1/2

18 tháng 1 2017

1)))))               S = { x/ x thuộc R}                                 chữ thuộc viết bằng kì hiệu

2)))))  bạn chép sai đề rồi

 đề đúng      x(x+1) =0

Giải

ở phương trình x= 0 có S={0}

ở phương trình x(x+1) có S={0;-1}

Vì hai phương trình có tập nghiêm khác nhau nên hai phương trinh ko tương đương

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)

$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$

$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$

$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$

$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$

$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$

$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$

$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)

14 tháng 8 2016

đây chính là hàm số y = ax +b voi a =1; b = -m2 -1

voi y =0 => x = m2 +1 <0 ( vô nghiệm vì m2 +1 luôn >0 voi moi m)

kl: không có gt m để x<0

14 tháng 8 2016
Đang onl trên đt 21h mk làm cho bạn
1 tháng 12 2021

\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)

Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)

\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

6 tháng 8 2016

a) Điều kiện : \(x\ge-\frac{3}{4}\)

Xét : \(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=\sqrt{\left(x+\frac{3}{4}\right)+2.\sqrt{x+\frac{3}{4}}.\frac{1}{2}+\frac{1}{4}}=\sqrt{\left(\sqrt{x+\frac{3}{4}}+\frac{1}{2}\right)^2}=\sqrt{x+\frac{3}{4}}+\frac{1}{2}\)

\(\Rightarrow x+\sqrt{x+\frac{3}{4}}+\frac{1}{2}=a\Leftrightarrow\left(x+\frac{3}{4}\right)+\sqrt{x+\frac{3}{4}}-\left(\frac{1}{4}+a\right)=0\)

Đặt \(y=\sqrt{x+\frac{3}{4}},y\ge0\). pt trên trở thành \(y^2+y-\left(a+\frac{1}{4}\right)=0\)

 Để pt có nghiệm theo y thì \(\Delta=1^2+4.\left(a+\frac{1}{4}\right)=2\left(2a+1\right)\ge0\Leftrightarrow a\ge-\frac{1}{2}\)

Khi đó : \(x_1=\frac{-1-\sqrt{2\left(2a+1\right)}}{2}\)\(x_2=\frac{-1+\sqrt{2\left(2a+1\right)}}{2}\)