K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2022

Câu 1C
Câu 2: B

NV
8 tháng 9 2021

Chắc đề là: \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=a\) ?

\(\left|\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right|=a\)

\(\Leftrightarrow\left|4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=a\)

\(\Leftrightarrow4\left|\overrightarrow{MO}\right|=a\)

\(\Leftrightarrow MO=\dfrac{a}{4}\)

Tập hợp M là đường tròn tâm O bán kính \(\dfrac{a}{4}\)

5 tháng 12 2023

Gọi G là trọng tâm của tam giác ABC, I là trung điểm BC.

Dễ dàng chứng minh \(\left\{{}\begin{matrix}\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\\\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\end{matrix}\right.\)

Kết hợp điều kiện đề bài, ta có \(MG=MI\). Do đó M nằm trên đường trung trực của GI (cố định).

Vậy tập hợp điểm M thoả điều kiện đề bài là trung trực của đoạn GI.

6 tháng 2 2020

một đường tròn

18 tháng 5 2017

a)
Giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MB}-\overrightarrow{MD}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+\left(\overrightarrow{MC}-\overrightarrow{MD}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (\(\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) do tứ giác ABCD là hình chữ nhật).
Vậy điều giả sử đúng. Ta có điều phải chứng minh.

18 tháng 5 2017

b) Theo quy tắc hình bình hành:
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\).
Áp dụng quy tắc 3 điểm:
\(\left|\overrightarrow{AB}-\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{DA}\right|=\left|\overrightarrow{DB}\right|=DB\).
Do tứ giác ABCD là hình chữ nhật nên AC = BD.
Vì vậy: \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\).

NV
26 tháng 11 2021

Qua A dựng đường thẳng d song song BC, trên d lấy điểm I sao cho \(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{BC}\)

\(\Rightarrow3\overrightarrow{IA}=2\overrightarrow{BC}\Rightarrow3\overrightarrow{IA}+2\overrightarrow{CB}=\overrightarrow{0}\)

Ta có:

\(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\left(\overrightarrow{MB}+\overrightarrow{CM}\right)\right|=\left|\overrightarrow{MB}+\overrightarrow{CM}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}+3\overrightarrow{IA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow MI=\dfrac{1}{3}BC\)

Tập hợp M là đường tròn tâm I bán kính \(\dfrac{BC}{3}\)

NV
2 tháng 10 2019

Gọi O là tâm hình chữ nhật

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=k\)

\(\Leftrightarrow\left|\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right|=k\)

\(\Leftrightarrow4\left|\overrightarrow{MO}\right|=k\)

\(\Rightarrow\left|\overrightarrow{MO}\right|=\frac{k}{4}\Rightarrow\) M thuộc đường tròn tâm O bán kính \(\frac{k}{4}\)

26 tháng 1 2021

Gọi N là trung điểm BC

\(\left|\overrightarrow{MA}+\overrightarrow{MC}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MO}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MC}+2\overrightarrow{MB}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow4\left|\overrightarrow{MN}\right|=\left|\overrightarrow{BD}\right|\)

\(\Rightarrow\left|\overrightarrow{BD}\right|=4\left|\overrightarrow{MN}\right|=4\left|\overrightarrow{DN}+\overrightarrow{MD}\right|\ge4MD-4DN\)

\(\Rightarrow4MD\le BD+4DN\)

\(\Leftrightarrow MD\le\dfrac{BD+4DN}{4}=\dfrac{a\sqrt{2}+2a\sqrt{5}}{4}=\dfrac{2\sqrt{5}+\sqrt{2}}{4}a\)