2.I've never watched a more exciting football match than this.
->This is................
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{5}\left(x+2\right)=\sqrt{10}\)
\(\Leftrightarrow x+2=\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{2}-2\)
a: \(=\dfrac{4}{x+2}+\dfrac{2}{\left(x-2\right)}-\dfrac{5x-6}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x-2}\)
b: \(=\dfrac{11x+13}{3\left(x-1\right)}+\dfrac{15x+17}{4\left(x-1\right)}\)
\(=\dfrac{44x+52+45x+51}{12\left(x-1\right)}=\dfrac{89x+103}{12\left(x-1\right)}\)
\(x^2+y^2+z^2-2x+4y-6z=15\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\)
Đặt \(P=\left|2x-3y+4z-20\right|=\left|2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right|\)
\(P^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\)
\(P^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\)
\(\Rightarrow P\le29\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\\\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{4}\end{matrix}\right.\)
Câu 1:
Pt có 2 nghiệm là 2 số đối nhau
\(\Rightarrow x_1+x_2=0\Rightarrow\frac{2\left(m^2-1\right)}{m^2-2m+3}=0\Rightarrow m=\pm1\)
Thay lại hai giá trị vào pt để thử
Câu 2:
- Với \(m+1=0\Rightarrow m=-1\) BPT trở thành: \(1>0\) (đúng)
- Với \(m\ne-1\), để BPT đúng với mọi x thì:
\(\left\{{}\begin{matrix}\Delta'< 0\\m+1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)^2+m\left(m+1\right)>0\\m>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)\left(2m+1\right)>0\\m>-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>-\frac{1}{2}\end{matrix}\right.\\m>-1\end{matrix}\right.\) \(\Rightarrow m>-\frac{1}{2}\)
Vậy \(\left[{}\begin{matrix}m=-1\\m>-\frac{1}{2}\end{matrix}\right.\)
Bài 1:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1+1-\dfrac{1}{50}\)
\(=2-\dfrac{1}{50}\)
\(\Rightarrow A< 2-\dfrac{1}{50}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
Vậy...
2.I've never watched a more exciting football match than this.
->This is...........the first time I have watched such an exciting football match.....