Chứng minh (9^32+9^31):10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{9}>\frac{1}{16}\)
\(\frac{1}{10}>\frac{1}{16}\)
\(\frac{1}{11}>\frac{1}{16}\)
............
\(\frac{1}{16}=\frac{1}{16}\)
\(\Rightarrow\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{16}>\frac{1}{16}\times8=\frac{1}{2}\)
\(\frac{1}{17}>\frac{1}{32}\)
\(\frac{1}{18}>\frac{1}{32}\)
\(\frac{1}{19}>\frac{1}{32}\)
..........
\(\frac{1}{32}=\frac{1}{32}\)
\(\Rightarrow\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+...+\frac{1}{32}>\frac{1}{32}\times8=\frac{1}{4}\)
\(\Rightarrow\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{32}>\frac{1}{3}+\frac{1}{4}\)
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
Ta có :
\(A=1+5+5^2+...+5^{32}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)
\(A=31+31.5^3+...+31.5^{30}\)
\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31
Vậy \(A\) chia hết cho 31
\(a)\) Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)
Vậy ...
M=9¹+9²+9³+9⁴....+9¹⁰+9¹¹+9¹²
9M=9(9¹+9²+9³+9⁴....+9¹⁰+9¹¹+9¹²)
9M=9.9¹+9.9²+9.9³+9.9⁴....+9.9¹⁰+9.9¹¹+9.9¹²
9M= 9²+ 9³+ 9⁴ + 9(mũ 5) ....+9¹¹+9¹²+9(mũ 13)
M= 9²+ 9³+ 9⁴ ....+9¹¹+9¹²+9¹
8M= 0+ 0+ 0 ....+0 +0 +9(mũ 13)-9¹
8M=9(mũ 13)-9
M=9[(mũ 13)-9]:8=(254186582832-9):8=254186582823:8=317733228528317733228528 chia hết cho 31 nên m là bội của 31
\(\text{Ta có : }9^{32}+9^{31}=9^{4\times8}+9^{28}+9^3\)
\(=\left(...1\right)+\left(...1\right)+\left(...9\right)=\left(...1\right)\)
\(\text{Suy ra đề sai}\)