Tìm min A=|x^2+x+16|+|x^2+x-6|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Đk: \(x\ge0\)
a) Ta có: x = 16 => A = \(\frac{\sqrt{16}+5}{\sqrt{16}+2}=\frac{4+5}{4+2}=\frac{9}{6}=\frac{3}{2}\)
\(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)=> \(\sqrt{x}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> A = \(\frac{\sqrt{2}-1+5}{\sqrt{2}-1+2}=\frac{\sqrt{2}+4}{\sqrt{2}+2}=\frac{\sqrt{2}\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{4-\sqrt{2}-1}{2-1}=3-\sqrt{2}\)
b) A = 2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=2\) <=> \(\sqrt{x}+5=2\sqrt{x}+4\) <=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(A=\sqrt{x}+1\) <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=\sqrt{x}+1\) <=> \(\sqrt{x}+5=\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\)
<=> \(\sqrt{x}+5=x+3\sqrt{x}+2\) <=> \(x+2\sqrt{x}-3=0\)<=> \(x+3\sqrt{x}-\sqrt{x}-3=0\)
<=> \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\) <=> \(\sqrt{x}-1=0\)(vì \(\sqrt{x}+3>0\))
<=> \(x=1\)(tm)
c) Ta có: \(A=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)
Do \(\sqrt{x}+2\ge\) => \(\frac{3}{\sqrt{x}+2}\le\frac{3}{2}\) => \(1+\frac{3}{\sqrt{x}+2}\le1+\frac{3}{2}=\frac{5}{2}\) => A \(\le\)5/2
Dấu "=" xảy ra<=> x = 0
Vậy MaxA = 5/2 <=> x = 0
chắc là x + 3 nhỉ :v
A = (x - 1)(x + 2)(x + 3)(x + 6)
A = [(x - 1)(x + 6)][(x + 2)(x + 3)]
A = (x^2 + 5x - 6)(x^2 + 5x + 6)
đặt x^2 + 5x = t
=> A = (t - 6)(t + 6)
A = t^2 - 36
t^2 > 0
=> A > -36
Xét A = -36 khi t = 0
=> x^2 + 5x = 0
=> x(x + 5) = 0
=> x = 0 hoặc x = -5
vậy Min A = -36 khi x = 0 hoặc x = -5
M=(x−1)(x+6)(x+3)(x+2)(x−1)(x+6)(x+3)(x+2)
=(x2+5x−6)(x2+5x+6)(x2+5x−6)(x2+5x+6)
Đặt x2+5x=ax2+5x=a thì thay vào M :
M=(a−6)(a+6)=a2−36(a−6)(a+6)=a2−36
Do a2≥0a2≥0(∀a∀a)⇒⇒a2−36≥−36(∀a)a2−36≥−36(∀a)
Vậy MinA = -36⇔a2=0⇔a=0⇔a2=0⇔a=0
Hay x(x+5)=0⇒[x=0x=−5
\(\left|x^2+x+16\right|=x^2+\left|x+16\right|\)( vì \(x^2\ge0\))
\(\left|x^2+x-6\right|=x^2+\left|x-6\right|\)(vì \(x^2\ge0\))
\(\left|x+16\right|+\left|x-6\right|=\left|x+16\right|=\left|-x+6\right|\ge\left|22\right|=22\)
dấu = xảy ra khi và chỉ khi \(\left(x+16\right).\left(-x+6\right)\ge0\Rightarrow-16\le x\le6\)(1)
\(x^2\ge0\Rightarrow x^2+x^2\ge0\)
dấu = xảy ra khi và chỉ khi x=0 (2)
=> \(x^2+\left|x+16\right|+x^2+\left|x-6\right|\ge22+0=22\)
dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra
=> x=0
Vậy min A=22 khi và chỉ khi x=0
p/s: ko chắc lắm, sai sót bỏ qua :))