K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

a^2+a-p=0

=> a^2+a = p

=> p = a.(a+1)

Ta thấy a;a+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> p chia hết cho 2

Mà p nguyên tố => p = 2

=> a^2+a = 2

=> a^2+a-2 = 0

=> (a^2-a)+(2a-2) = 0

=> a.(a-1)+2.(a-1) = 0

=> (a-1).(a+2) = 0

=> a-1=0 hoặc a+2=0

=> a=1 hoặc a=-2

Vậy a thuộc {-2;1}

12 tháng 6 2017

Với \(n=0\Rightarrow A=0\)

Với \(n\ne0\)

Xét \(p=2\)thì ta có:

\(A=n^4+4n^3=n^2\left(n^2+4n\right)\)

Vì A là số chính phương nên 

\(\Rightarrow n^2+4n=x^2\)

\(\Leftrightarrow\left(n+2\right)^2-x^2=4\)

\(\Leftrightarrow\left(n+2+x\right)\left(n+2-x\right)=4\)

\(\Leftrightarrow\left(n+2+x,n+2-x\right)=\left(1,4;4,1;2,2;-1,-4;-4,-1;-2-2\right)\)

\(\Leftrightarrow\left(n,x\right)=\left(-4,0\right)\)

Xét \(p\ge3\) thì ta có \(p+1=2k+4\left(k\ge0\right)\)

\(A=n^4+4n^{2k+4}=n^4\left(1+4n^{2k}\right)\)

Vì A là số chính phương nên 

\(\Rightarrow1+n^{2k}=y^2\)

\(\Leftrightarrow\left(y-n^k\right)\left(y+n^k\right)=1\)

\(\Leftrightarrow\left(y-n^k;y+n^k\right)=\left(1,1;-1,-1\right)\)

Không có giá trị \(n\ne0\)thỏa mãn cái trên

Vậy ......

19 tháng 6 2017

chết lộn đề , 4n^(p-1) 

Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)

\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)

\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)

\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)

\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)

\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)

\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)

Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(m\in\left\{3;2;4;1;7\right\}\)

17 tháng 5 2022

2p+1 mới đúng chứ bạn.

-Khi \(p=2\) thì: \(p+4=2+4=6\) là hợp số \(\Rightarrow loại\).

-Khi \(p=3\) thì: \(p+4=3+4=7\) là số nguyên tố ;

\(2p+1=2.3+1=7\) là số nguyên tố 

\(\Rightarrow nhận\)

-Khi \(p>3\) mà p là số nguyên tố \(\Rightarrow\)p có dạng 6k+1 hoặc 6k+5 (k∈N*)

*\(p=6k+1\Rightarrow2p+1=2\left(6k+1\right)+1=12k+3\) chia hết cho 3 (loại).

*\(p=6k+5\Rightarrow p+4=6k+5+4=6k+9\) chia hết cho 3(loại).

-Vậy \(p=3\) thì \(p+4\) và \(2p+1\) cũng là số nguyên tố.

6 tháng 1 2022

A = 3/n + 2 mà A là một số nguyên, 2 là một số nguyên => 3/n là một số nguyên => 3 ⋮ n => n ∊ Ư(3) = {-3;-1;1;3}. Vậy n ∊ {-3;-1;1;3}