Cmr 1111...111 (có n số 1)
Không là so chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 11......1 (n chữ số 1 ) =a ( a thuộc N )
=> 2222.....2(n chữ số 2) =2a
100....0(n chữ số 0) = 9a+1
=> 1111....1(2n chữ số 1) = a.(9a+1)+a
Khi đó : A = a.(9a+1)+a-2a = 9a^2+a+a-2a=9a^2 = (3a)^2 là số chính phương)
=> ĐPCM
Đặt 111...1 (n c/s 1) = a => 10n = 9a + 1
Làm tương tự câu trên nhé
Đặt 111...1 (n c/s 1) = a = > \(10^n\)= 9a + 1
Làm tương tự như câu trên nha!
Ta sẽ CM tổng của 2 số chính phương chia 4 không thể có số dư là 3.
Thật vậy mọi số chính phương chẵn luôn chia hết cho 4.
mọi số chính phương lẻ luôn chia 4 dư 1 (vì (2x+1)2=4x(x+1)+1 chia 4 dư 1)
Do đó tổng của hai số chính phương chỉ có thể có số dư 0,1 hoặc 2 khi chia cho 4
Mà các số trên đều được viết dưới dạng 11...1=10...0+11.
Mà 10...0 chia hết cho 4 và 11 chia 4 dư 3 nên dãy số này không có số nào biểu diễn được dưới dạng tổng của 2 số chính phương (đpcm)
1111.....1211....1=111...1100....0+111...11
=111...11.100..0+111...11.1
=111...11.(100...0+1)chia hết cho 111....11(đpcm)
đúng biết rồi thì đừng có hỏi rảnh nợ
What I