Tính
1. \(\sqrt{\left(\frac{2}{3}\right)^2}-\sqrt{0,09}+\sqrt{\frac{9}{25}}\)
2. \(\sqrt{\left(\frac{-2}{5}\right)^2}+\sqrt{1,44}-\sqrt{\frac{25}{4}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{25}{4}}+\left(\sqrt{\frac{1}{2}}\right)^2:\left(\frac{-\sqrt{9}}{4}\right).\sqrt{\frac{16}{81}}-4^2-\left(-2\right)^3\)
\(=\frac{5}{2}+\frac{1}{2}:\frac{-3}{4}.\frac{4}{9}-16+8\)
\(=\frac{5}{2}-\frac{8}{27}-8\)
\(=\frac{-313}{54}\)
a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)
\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)
\(=\frac{4}{5}+11-2\)
\(=\frac{4}{5}+9\)
\(=\frac{49}{9}\)
b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
\(=-8+4-5+64\)
= 55
c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)
\(=\frac{\sqrt{48}}{91-7}\)
\(=\frac{4\sqrt{3}}{84}\)
\(=\frac{\sqrt{3}}{41}\)
d) Xem lại đề nhé em!
e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
\(=5-3.\frac{2}{3}\)
= 5 - 2
= 3
h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)
\(=-9.\frac{1}{3}-7+125:5\)
\(=-3-7+25\)
= 15