Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(tan\alpha=\dfrac{2}{3}\)
Mà: \(tan\alpha\cdot cot\alpha=1\)
\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\dfrac{2}{3}}=\dfrac{3}{2}\)
Và: \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Rightarrow cos^2\alpha=\dfrac{1}{1+tan^2\alpha}\)
\(\Rightarrow cos\alpha=\sqrt{\dfrac{1}{1+tan^2\alpha}}=\sqrt{\dfrac{1}{1+\left(\dfrac{2}{3}\right)^2}}=\dfrac{3\sqrt{13}}{13}\)
Lại có:
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(\Rightarrow sin\alpha=tan\alpha\cdot cos\alpha=\dfrac{2}{3}\cdot\dfrac{3\sqrt{13}}{13}=\dfrac{2\sqrt{13}}{13}\)
Câu 1:
\(\sin\widehat{B}=\dfrac{12}{13}\)
\(\cos\widehat{B}=\dfrac{5}{13}\)
\(\tan\widehat{B}=\dfrac{12}{5}\)
\(\cot\widehat{B}=\dfrac{5}{12}\)
Sin B = \(\frac{AC}{BC}\); cos B = \(\frac{AB}{BC}\) ; tgB = \(\frac{AC}{AB}\); cot gB = \(\frac{AB}{BC}\)
Do góc B và C là hai góc phụ nhau nên :
sin C = cos B = \(\frac{AB}{BC};cosB=\frac{AB}{BC};cosC=sinB=\frac{AC}{BC}\)
\(tgC=cotgB=\frac{AB}{BC};cotgC=tgB=\frac{AC}{AB}\)
Chúc bạn học tốt !!!
a: \(\sin\widehat{E}=\dfrac{4}{5}\)
\(\cos\widehat{E}=\dfrac{3}{5}\)
\(\tan\widehat{E}=\dfrac{4}{3}\)
\(\cot\widehat{E}=\dfrac{3}{4}\)
a: Xét ΔDFE vuông tại D có
\(FE^2=DE^2+DF^2\)
hay FE=7,5(cm)
Xét ΔDEF vuông tại D có
\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\cos\widehat{E}=\dfrac{3}{5}\)
\(\tan\widehat{E}=\dfrac{4}{3}\)
\(\cot\widehat{E}=\dfrac{3}{4}\)
b: \(\cos\widehat{E}=\dfrac{3}{5}\)
nên \(\widehat{E}=53^0\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=3^2+4^2=25\)
hay AC=5(cm)
Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{4}{5};\cos\widehat{A}=\dfrac{AB}{AC}=\dfrac{3}{5};\)
\(\tan\widehat{A}=\dfrac{BC}{BA}=\dfrac{4}{3};\cot\widehat{C}=\dfrac{BA}{BC}=\dfrac{3}{4}\)
Áp dụng ĐLPTG, ta có:
AC²=AB²+BC²
<=>AC²=3²+4²=25
<=>AC=5(cm)
Xét tam giác ABC vuông tại B ta có:
Sin A=4/5 cos A=3/5 tg A=3/4 cost A=4/3