\(\left(3x-6\right).3=3^4\)
Giải chi tiết và rõ ràng nha!Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=5\sqrt{2^2\left[\left(x-4\right)^3\right]^2}-3\left(x-4\right)^3\)
\(=10\left|\left(x-4\right)^3\right|-3\left(x-4\right)^3\)
\(=-10\left(x-4\right)^3-3\left(x-4\right)^3\)
\(=-13\left(x-4\right)^3\)
Có: \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-3\right|+\left|y-1\right|\ge0\forall x;y\)
Mà: \(\left|x-3\right|+\left|y-1\right|=0\)
nên: \(\left\{{}\begin{matrix}x-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Bài 4:
Điện trở tương đương :
\(R_{tđ}=\dfrac{U}{V}=\dfrac{12}{0,4}=30\left(\Omega\right)\)
Ta có: \(R_{tđ}=R_1+R_2\Leftrightarrow R_1=R_{tđ}-R_2=30-20=10\left(\Omega\right)\)
dấu . là nhân hay là phần ngăn cách ở hàng phần nghìn thế
\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)
\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)
\(a,\dfrac{7}{12}+\dfrac{3}{4}\times\dfrac{2}{9}=\dfrac{7}{12}+\dfrac{1}{6}=\dfrac{7}{12}+\dfrac{2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(b,\dfrac{8}{9}-\dfrac{4}{15}:\dfrac{2}{5}=\dfrac{8}{9}-\dfrac{4}{15}\times\dfrac{5}{2}=\dfrac{8}{9}-\dfrac{2}{3}=\dfrac{8}{9}-\dfrac{6}{9}=\dfrac{2}{9}\)
\(\left(3x-6\right).3=3^4\)
\(\left(3x-6\right)=3^4:3^1\)
\(\left(3x-6\right)=3^{4-1}\)
\(\left(3x-6\right)=3^3\)
\(\left(3x-6\right)=27\)
\(3x=27+6\)
\(3x=33\)
\(x=33:3\)
\(x=11\)
\(\Rightarrow x=11\)
(3x-6).3=3^4
(3x-6).3=81
3x-6=27
3x=21
x=7