K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

Câu hỏi của Nguyễn Quốc Hưng - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài ở link này nhé!

13 tháng 11 2018

Dễ nhưng tao ko biết

16 tháng 11 2018

4 tháng 9 2023

a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)

các bạn làm ơn giúp mik

25 tháng 1 2017

k minh minh giai cho

21 tháng 12 2019

Với mọi số nguyên n ta có \(n\le n^2\). Do đó từ đề bài suy ra :

\(a^2\le b\le b^2\le c\le c^2\le a\le a^2\)

Do đó \(a^2=b=b^2=c=c^2=a=a^2\)

Ta có \(a^2=a\Leftrightarrow a(a-1)=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)

Tương tự \(\orbr{\begin{cases}b=0\\b=1\end{cases}},\orbr{\begin{cases}c=0\\c=1\end{cases}}\)

Có 2 đáp số a = b = c = 0 và a = b = c = 1