K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TL:

Đặt A=(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)A=(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)

⇒2A=(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)⇒2A=(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)

=(32−1)(32+1)(34+1)(38+1)(316+1)(332+1)=(32−1)(32+1)(34+1)(38+1)(316+1)(332+1)

=...........................................=...........................................

=(332−1)(332+1)=364−1=(332−1)(332+1)=364−1

⇒A=364−122

k cho mk nha

HT

2 tháng 9 2016

Có: \(A=4\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

          \(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

           \(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

          \(=...........................\)

           \(=\frac{3^{32}-1}{2}\)

\(B=3^{32-1}\)

=> \(A< B\)

3 tháng 9 2017

a) A = 2016.2018 = ( 2017 - 1 ).2018 = 2017.2018 - 2018 ( 1 )

B = 20172 = 2017.2017 = 2017.( 2018 - 1) = 2017.2018 - 2017 ( 2 )

Từ (1) và (2), ta thấy: - 2018 < - 2017 => 2017.2018 - 2018 < 2017.2018 - 2017 <=> 2016.2018 < 20172

Vậy A < B 

~ Phần b khi nào nghĩ ra tớ sẽ làm ngay ạ :) Còn phần này chắc chắn đúng cậu nhé ~

3 tháng 9 2017

b)\(x=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2x=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2x=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2x=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2x=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2x=\left(3^{16}-1\right)\left(3^{16}+1\right)\Rightarrow x=\frac{3^{32}-1}{2}\)

Thấy \(x=\frac{3^{32-1}}{2}< 3^{32}-1=y\)

5 tháng 7 2017

Nó hơi dài cậu chờ tí nka !

5 tháng 7 2017

Mình ghi nhầm đề bài 1 tí đề bài là :

So sánh 2 số A và B biết : 

A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1

18 tháng 7 2017

\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)

Vậy \(A< B\)

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

26 tháng 1 2016

nhầm tớ lộn sang bài khác sorry

27 tháng 1 2016

trình bày cách giải giùm với nhé