K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

\(\frac{20102011}{2012}=9991+\frac{119}{2012}=9991+\frac{1}{\frac{2012}{119}}=9991+\frac{1}{16+\frac{108}{119}}=9991+\frac{1}{16+\frac{1}{\frac{119}{108}}}\)

\(=9991+\frac{1}{16+\frac{1}{1+\frac{11}{108}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{\frac{108}{11}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{9}{11}}}}\)

=\(=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{\frac{11}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{2}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}}}}\)

14 tháng 11 2018

Nguyễn Thị Linh Chi có thể hướng dẫn cho mình cụ thể chút nữa được không.

Làm sao để \(\frac{20102011}{2012}\)=9991+\(\frac{119}{2012}\)vậy bạn?

(giúp mik nhé, mik cảm ơn nha!)

9 tháng 3 2019

Ta có : \(\frac{20082009}{242}=82983+\frac{123}{242}\)

                                   \(=82983+\frac{1}{\frac{242}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{119}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{\frac{123}{119}}}\)

                                   \(=82983+\frac{1}{1+\frac{1}{1+\frac{4}{119}}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{119}{4}}}}\)

                                 \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{3}{4}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{\frac{4}{3}}}}}\)

                               \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{3}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{\frac{3}{1}}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

\(\Rightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

Cân bằng hệ số ta thu được \(a=82983\)

                                            \(b=1\)

                                            \(c=1\)

                                           \(d=29\)

                                           \(e=1\)

                                          \(f=2\)

                                         \(g=1\)

P/S: e lớp 6 , có gì sai thông cảm ạ =))

9 tháng 3 2019

Incursion giỏi dữ vậy ta

Bạn ơi có sai đề không vậy

8 tháng 9 2018

Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)

Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)

Từ (2) suy ra xy+yz+xz=0

Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Suy ra \(x^2+y^2+z^2=1\)

 A có 60 con gà. Ngày 1, A bán cho B, C, D với tổng số gà là 36 con.Ngày 2, A bán cho E, F, G số gà còn lại sau ngày 1. Cùng lúc đó, B, C, D ăn gà, và họ đẵ ăn lần lượt \(\frac{1}{2},\frac{1}{3},\frac{1}{4}\) số gà họ có.( Tức là B ăn \(\frac{1}{2}\), C ăn \(\frac{1}{3}\) và D ăn \(\frac{1}{4}\).) ( Mỗi ngày A bán cho mỗi người số gà bằng nhau. )Ngày 3, B, C, D, E, F, G ăn gà, và họ ăn như sau: B ăn nốt số gà mình...
Đọc tiếp

 A có 60 con gà. Ngày 1, A bán cho B, C, D với tổng số gà là 36 con.

Ngày 2, A bán cho E, F, G số gà còn lại sau ngày 1. Cùng lúc đó, B, C, D ăn gà, và họ đẵ ăn lần lượt \(\frac{1}{2},\frac{1}{3},\frac{1}{4}\) số gà họ có.

( Tức là B ăn \(\frac{1}{2}\), C ăn \(\frac{1}{3}\) và D ăn \(\frac{1}{4}\).) ( Mỗi ngày A bán cho mỗi người số gà bằng nhau. )

Ngày 3, B, C, D, E, F, G ăn gà, và họ ăn như sau: B ăn nốt số gà mình còn sau ngày 2, C ăn \(\frac{1}{2}\) số gà mình còn sau ngày 2, D ăn \(\frac{1}{3}\) số gà mình còn sau ngày 2, E ăn \(\frac{1}{2}\) số gà mình có, F ăn \(\frac{1}{4}\) số gà mình có, G ăn \(\frac{1}{8}\) số gà mình có.

Ngày 4, B, C, D, E, F, G bán lại số gà mình còn sau ngày 3 cho A.

Dựa vào thông tin trên, trả lời câu hỏi:

a) Vào ngày 4, A có mấy con gà? ( Nếu A mua hết )

b) Nếu ngày 1 A nói với B, C, D rằng: " Giá tiền khi mua 3 con gà là 36 000 đồng ", thì vào ngày 4, mỗi người A, B, C, D, E, F. G sẽ lãnh, lỗ bao nhiêu tiền hay hòa vốn? ( Giả sử số tiền mua 1 con gà là bằng nhau , và ngày 2, giá tiền mua 1 con gà là bằng giá tiền mua 1 con gà vào ngày 1, ngày 4. )

Nhớ trình bày rõ ràng nếu muốn tớ cho 1 like nha!!!!

0
28 tháng 8 2015

Lúc này thầy viết nhầm mất giá trị b,e,f nó phải bằng 1,2,3 và lúc tính quên không lộn ngược c,f,i. Để thầy giải lại:

Ta hãy xét hai biểu thức \(a+\frac{1}{b+\frac{1}{c}},d+\frac{1}{e+\frac{1}{f}}\). Ta thấy rằng, nếu \(a>d\to a+\frac{1}{b+\frac{1}{c}}>d+1\ge d+\frac{1}{e+\frac{1}{f}}\). Điều đó có nghĩa rằng ở phần không chứa phân số, giá trị càng tăng biểu thức càng lớn, không phụ thuộc vào các giá trị ở mẫu. Suy ra để tổng lớn nhất thì \(a,d,g\)  phải nhận các giá trị là \(7,8,9\). Không mất tính tổng quát coi \(a=9,d=8,g=7\).    

Tiếp theo, xét hai mẫu số \(b+\frac{1}{c},e+\frac{1}{f}\). Nếu \(b>e\to b+\frac{1}{c}>e+1\ge e+\frac{1}{f}\), điều đó có nghĩa làm cho mẫu số tăng lên nếu phần b tăng lên. Để phân số lớn nhất thì mẫu phải nhỏ nhất. Do đó mà \(b,e,h\) phải nhận các giá trị bé nhất là \(1,2,3\). Không mất tính tổng quát coi \(b=1,e=2,h=3\). Cuối cùng ta có các phân số sắp xếp như sau \(\frac{1}{1+\frac{1}{c}}>\frac{1}{2+\frac{1}{f}}>\frac{1}{3+\frac{1}{i}}\).  Các số \(c,f,i\)
 chỉ nhận các giá trị là 4,5,6.  Từ đó ta thấy \(c=6,f=5,i=4\). Vậy giá trị lớn nhất của tổng sẽ là

\(9+\frac{1}{1+\frac{1}{6}}+8+\frac{1}{2+\frac{1}{5}}+7+\frac{1}{3+\frac{1}{4}}=24+\frac{6}{7}+\frac{5}{11}+\frac{4}{13}=\frac{25645}{1001}\)


 

 

 

24 tháng 8 2015

= 101/6                  ,                   chắc sai