Cho: a+\(\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}\)=\(\frac{20102011}{2012}\)
Tìm các số tự nhiên a, b, c, d, e, f, g?
(Giải cụ thể giúp mình nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{20082009}{242}=82983+\frac{123}{242}\)
\(=82983+\frac{1}{\frac{242}{123}}\)
\(=82983+\frac{1}{1+\frac{119}{123}}\)
\(=82983+\frac{1}{1+\frac{1}{\frac{123}{119}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{4}{119}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{119}{4}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{3}{4}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{\frac{4}{3}}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{3}}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{\frac{3}{1}}}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)
\(\Rightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)
Cân bằng hệ số ta thu được \(a=82983\)
\(b=1\)
\(c=1\)
\(d=29\)
\(e=1\)
\(f=2\)
\(g=1\)
P/S: e lớp 6 , có gì sai thông cảm ạ =))
Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)
Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)
Từ (2) suy ra xy+yz+xz=0
Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
Suy ra \(x^2+y^2+z^2=1\)
Lúc này thầy viết nhầm mất giá trị b,e,f nó phải bằng 1,2,3 và lúc tính quên không lộn ngược c,f,i. Để thầy giải lại:
Ta hãy xét hai biểu thức \(a+\frac{1}{b+\frac{1}{c}},d+\frac{1}{e+\frac{1}{f}}\). Ta thấy rằng, nếu \(a>d\to a+\frac{1}{b+\frac{1}{c}}>d+1\ge d+\frac{1}{e+\frac{1}{f}}\). Điều đó có nghĩa rằng ở phần không chứa phân số, giá trị càng tăng biểu thức càng lớn, không phụ thuộc vào các giá trị ở mẫu. Suy ra để tổng lớn nhất thì \(a,d,g\) phải nhận các giá trị là \(7,8,9\). Không mất tính tổng quát coi \(a=9,d=8,g=7\).
Tiếp theo, xét hai mẫu số \(b+\frac{1}{c},e+\frac{1}{f}\). Nếu \(b>e\to b+\frac{1}{c}>e+1\ge e+\frac{1}{f}\), điều đó có nghĩa làm cho mẫu số tăng lên nếu phần b tăng lên. Để phân số lớn nhất thì mẫu phải nhỏ nhất. Do đó mà \(b,e,h\) phải nhận các giá trị bé nhất là \(1,2,3\). Không mất tính tổng quát coi \(b=1,e=2,h=3\). Cuối cùng ta có các phân số sắp xếp như sau \(\frac{1}{1+\frac{1}{c}}>\frac{1}{2+\frac{1}{f}}>\frac{1}{3+\frac{1}{i}}\). Các số \(c,f,i\)
chỉ nhận các giá trị là 4,5,6. Từ đó ta thấy \(c=6,f=5,i=4\). Vậy giá trị lớn nhất của tổng sẽ là
\(9+\frac{1}{1+\frac{1}{6}}+8+\frac{1}{2+\frac{1}{5}}+7+\frac{1}{3+\frac{1}{4}}=24+\frac{6}{7}+\frac{5}{11}+\frac{4}{13}=\frac{25645}{1001}\).
\(\frac{20102011}{2012}=9991+\frac{119}{2012}=9991+\frac{1}{\frac{2012}{119}}=9991+\frac{1}{16+\frac{108}{119}}=9991+\frac{1}{16+\frac{1}{\frac{119}{108}}}\)
\(=9991+\frac{1}{16+\frac{1}{1+\frac{11}{108}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{\frac{108}{11}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{9}{11}}}}\)
=\(=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{\frac{11}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{2}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}}}}\)
Nguyễn Thị Linh Chi có thể hướng dẫn cho mình cụ thể chút nữa được không.
Làm sao để \(\frac{20102011}{2012}\)=9991+\(\frac{119}{2012}\)vậy bạn?
(giúp mik nhé, mik cảm ơn nha!)