giải hộ
tìm giá trị nhỏ nhất của
A=\(|x-2001|+|x-1|\)
ai làm dc mik tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)
Vậy,..........
1.
A = | x | + 3
vì | x | \(\ge\)0 nên | x | + 3 \(\ge\)3
\(\Rightarrow\)GTNN của A = 3 khi | x | = 0 hay x = 0
tương tự
2.
M = 5 - | x |
vì | x | \(\ge\)0 nên 5 - | x | \(\le\)5
\(\Rightarrow\)GTLN của M = 5 khi | x | = 0 hay x = 0
a
B=x-4+9/x-4
B=X-4/X-4+9/X-4
B=1+9/x-4
để B thuộc z suy ra 9/x-4 thuộc z
suy ra x-4 thuộc vào Ư của 9
x-4=1 suy ra x=5 suy ra B=10
x-4=3 suy ra x=7 suy ra B=4
x-4=9 suy ra x= 13 suy ra B=2
x-4=-1 suy ra x= 3 suy ra B=-8
x-4=-3 suy ra x=1 suy ra B=-2
x-4=-9 suy ra x=-5 suy ra B=0
b
ta có :
B= 1+9/x-4
để B lớn nhất suy ra 9/x-4 lớn nhất suy ra x-4=1 suy ra x=5
suy ra Bmax=10 khi x=5
c tao có:
B=1+9/x-4
để B nhỏ nhất suy ra 9/x-4 nhỏ nhất suy ra x-4=-1 suy ra x=3
suy ra 9/x-4=-9
suy ra Bmin=-8 khi x=3
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2001|+|x-1|=|2001-x|+|x-1|\geq |2001-x+x-1|=2000$
Vậy $A_{\min}=2000$. Giá trị này đạt được khi $(2001-x)(x-1)\geq 0$
$\Leftrightarrow 2001\geq x\geq 1$
cái này easy mà giá trị nhỏ nhất =0 khi cả hai cái kia đều =0
\(\text{Ta có : }|a|+|b|\ge|a+b|\)
Ắp dụng vào A ta đc:
\(A=|x-2001|+|x-1|\)(mẹo tí nha)
\(=|x-2001|+|1-x|\ge|x-2001+1-x|=2000\)
Vậy MinA =2000 dấu bằng xảy ra khi và chỉ khi
\(\hept{\begin{cases}|2011-x|=2011-x\ge0\\|x-1|=x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2011\\x\ge1\end{cases}}}\)=> \(1\le x\le2011\)