Tính :
A) 2x.(x+1)
B) (5x - 6y)(x - 2)
C) (10x^4y^2 - 5x^3y^2 + 15xy^4) : 5xy
D) 2x(x+y) - 3(x+y)
E) 4x^2 - 49
Chứng minh
x(x+2) - 2x-4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, a, \(2x\left(x+1\right)=2x^2+2x\)
b, \(\left(5x-6\right)\left(x-2\right)=5x^2-16x+12\)
c, \(\left(10x^4y^2-5x^3y^2+15xy^2\right):5xy=2x^3y-x^2y+3y\)
2, a, \(2x\left(x+y\right)-3\left(x+y\right)=\left(x+y\right)\left(2x-3\right)\)
b, \(4x^2-49=\left(2x\right)^2-7^2=\left(2x+7\right)\left(2x-7\right)\)
3, \(x\left(x+2\right)-2x-4=0\)
\(\Leftrightarrow x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Bài 1:
a) x( x - y) + x - y = (x - y)(x + 1)
b) 2x + 2y - x( x + y) = ( 2x + 2y) - x( x + y)
= 2( x + y ) - x( x + y ) = ( x + y )(2 - x )
c) 5x2 - 5xy - 10x + 10y = ( 5x2 - 5xy ) - ( 10x - 10y)
= 5x( x - y ) - 10( x - y ) = ( x - y )(5x - 10 )
= 5( x - y )( x - 2 )
d) 4x2 + 6xy - 3x - 6y = Mình ko làm được!!! bạn chép có sai đề không
Bài 2:
x ( 2x - 7) - 4x + 14 = 0
⇒ 2x2 - 7x - 4x + 14 = 0 ⇒ ( 2x2 - 4x ) - ( 7x - 14 ) = 0
⇒ 2x( x - 2 ) - 7(x - 2) = 0
⇒ (x - 2)(2x - 7) = 0
⇒ \(\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x = 2; x = \(\dfrac{7}{2}\)
1) 2x + 2y - x(x+y)
= 2(x + y) - x(x + y)
= (2 - x)(x + y)
2/ 5x2 - 5xy -10x + 10y
= 5x(x - y) - 10(x - y)
= (5x - 10(x - y)
3/ 4x2 + 8xy - 3x - 6y
= 4x(x + 2y) - 3(x + 2y)
= (4x - 3)(x + 2y)
1) 2x + 2y - x(x + y)
= 2(x + y) - x(x + y)
= (2 - x)(x + y)
2) 5x2 - 5xy - 10x + 10y
= 5x(x - y) - 10(x - y)
= (5x - 10)(x - y)
= 5(x - 2)(x - y)
3) 4x2 + 8xy - 3x - 6y
= 4x(x + 2y) - 3(x + 2y)
= (4x - 3)(x + 2y)
4) 2x2 + 2y2 - x2z + z - y2z - 2
= 2(x2 + y2 - z(x2 + y2) - (2 - z)
= (2 - z)(x2 + y2) - (2 - z)
= (2 - z)(x2 + y2)
5) x2 + xy - 5x - 5y
= x(x + y) - 5(x + y)
= (x - 5)(x + y)
6) x(2x - 7) - 4x + 14
= x(2x - 7) - 2(2x - 7)
= (x - 2)(2x - 7)
7)x2 - 3x + xy - 3y
= x(x + y) - 3(x + y)
= (x - 3)(x + y)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)
Thay x = 15 vào bt A ta có
A = 9 . 15 = 135
b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)
Thay x = -1/5 ; y = - 1/2 vào bt B ta có
\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)
\(=9x^2y^2-xy^3-8x^3\)
Thay x = 1/2 ; y = 2 vào bt C ta có
\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)
d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)
\(=12x^2+12x-3\)
\(\left|x\right|=2\Rightarrow x=\pm2\)
Thay x = 2 vào bt D có
\(D=12.4+12.2-3=69\)
Thay x = - 2 vào bt D ta có
\(D=12.4-12.2-3=21\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
A) \(2x\left(x+1\right)=2x^2+2x\)
B) \(\left(5x-6y\right)\left(x-2\right)=5x^2-10x-6xy+12y\)
C) \(\dfrac{10x^4y^2-5x^3y^2+15xy^4}{5xy}=\dfrac{5xy\left(2x^3y-x^2y+3y^3\right)}{5xy}\)
\(=2x^3y-x^2y+3y^3\)
D) \(2x\left(x+y\right)-3\left(x+y\right)=2x^2+2xy-3x-3y\)
\(E)4x^2-49\)
F) \(x\left(x+2\right)-2x-4=0\)
\(x\left(x+2\right)-2\left(x+2\right)=0\)
\(\left(x-2\right)\left(x+2\right)=0\)
\(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
A, 2x.(x+1) = 2x\(^2\)+2x B,(5x-6y)(x-2) = 5x\(^2\)-10x-6xy+12y C,(10x\(^4\)y\(^2\)-5x\(^3\)y\(^2\)+15xy\(^4\)) : 5xy = 2x\(^3\)y - x\(^2\)y + 3y\(^3\)