Cho N điểm phân biệt A1,A2,A3,....An. Trong đó không có 3 điểm bất kì nào thẳng hàng. Hỏi qua 2 điểm trong N điểm trên vẽ được bao nhiêu đường thẳng phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho n điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Qua 2 điểm ta vẽ
được một đường thẳng. Có tất cả 28 đường thẳng. Tìm n?
b) Cho n điểm phân biệt trong đó có 7 điểm thẳng hàng. Kẻ các đường thẳng đi qua các cặp
điểm. Có tất cả 190 đường thẳng. Tìm n?
c) Cho 20 đường thẳng đôi một cắt nhau và không có ba đường thẳng nào đồng quy. Hỏi có
bao nhiêu giao điểm tạo thành?
Đáp án C
Số cách lấy 3 điểm từ 10 điểm trên là .
Số cách lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 là:
Khi lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 thì sẽ không tạo thành tam giác.
Số tam giác tạo thành : tam giác.
Đáp án là C
Số cách lấy 3 điểm từ 10 điểm phân biệt là C 10 3 = 120
Số cách lấy 3 điểm bất kì trong 4 điểm A 1 , A 2 , A 3 , A 4 là C 4 3 = 4
Khi lấy 3 điểm bất kì trong 4 điểm A 1 , A 2 , A 3 , A 4 thì sẽ không tạo thành tam giác.
Như vậy, số tam giác tạo thành : 120- 4 = 116 tam giác.
Đáp án A.
Ta có 3TH.
+) TH1: 2 trong số 4 điểm A1, A2, A3, A4 tạo thành 1 cạnh, suy ra có C 4 2 . 6 = 36 tam giác.
+) TH2: 1 trong số 4 điểm A1, A2, A3, A4 là 1 đỉnh của tam giác, suy ra có 4 C 6 2 = 60 tam giác.
+) TH3: 0 có đỉnh nào trong 4 điểm A1, A2, A3, A4 là đỉnh của tam giác có C 6 3 = 20 tam giác. Suy ra có 36 + 60 + 20 = 116 tam giác có thể lập được.
Đáp án A
Lấy 3 đỉnh trong 10 điểm trên có C 10 3 = 120 cách
Lấy 3 đỉnh trong 4 điểm thẳng hàng có C 4 3 = 4 cách
Do đó, số tam giác cần tính là 120 − 4 = 116
Từ 1 điểm vẽ với 39 điểm còn lại ta được 39 đường thẳng.
Từ 40 điểm ta vẽ được:39.40=1560 đường thẳng
Vì một đường thẳng được tính 2 lần nên số đường thẳng là: 1560:2=780 đường thẳng
Đáp số: 780 đường thẳng
Ta thấy: Trong n điểm phân biệt cho trước, cứ qua 1 điểm ta vẽ được n - 1 đường thẳng. Vậy qua n điểm ta vẽ được n(n - 1) đoạn thẳng.
Nhưng nếu tính vậy thì mỗi đường thẳng sẽ bị tính đi tính lại 2 lần
Vậy số đoạn thẳng phân biệt được tạo ra từ n điểm phân biệt trên là: \(\frac{n\left(n-1\right)}{2}\)(đường thẳng)