Tính \(A=-\frac{1}{2010}-\frac{1}{2010\times2009}-\frac{1}{2009\times2008}-.....-\frac{1}{3\times2}-\frac{1}{2\times1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{16}{15}\times\frac{17}{16}\times\frac{18}{17}\times...\times\frac{2010}{2009}\times\frac{2011}{2010}\)
\(=\frac{1}{15}\times2011\)
\(=\frac{2011}{15}\)
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)
\(A=\frac{1}{2011}\)
Ta có: A=\(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)
=> A=\(\frac{2012-2011}{2011}+\frac{2012-2010}{2010}+...+\frac{2012-2}{2}+\frac{2012-1}{1}\)
=>A=\(\frac{2012}{2011}-1+\frac{2012}{2010}-1+...+\frac{2012}{2}-1+2012-1\)
=>A=\(2012\cdot\left(\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{2}\right)+1\)
=> A= \(2012\cdot\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)\)
ko biết có đúng hay ko nựa sai thì bỏ qua nha ^^
Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!
Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)
Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)
\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)
\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)
\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)
Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~
\(A=\frac{2010}{1}+\frac{2009}{2}+...+\frac{2}{2009}+\frac{1}{2010}\)
\(A=1+\left(\frac{2009}{2}+1\right)+...+\left(\frac{2}{2009}+1\right)+\left(\frac{1}{2010}+1\right)\)
\(A=\frac{2011}{2011}+\frac{2011}{2}+...+\frac{2011}{2009}+\frac{2011}{2010}\)
\(A=\frac{2011}{2}+...+\frac{2011}{9}+\frac{2011}{10}+\frac{2011}{11}\)
\(A=2011.\left(\frac{1}{2}+...+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)\)
\(A=2011.B\)
Nên : \(\frac{A}{B}=\frac{2011.B}{B}=2011\)
Vậy \(\frac{A}{B}=2011\)
Tham khảo nha !!! Chúc bạn học tốt !!!
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
\(A=-\frac{1}{2010}-\left(\frac{1}{2010.2009}+\frac{1}{2009.2008}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(A=-\frac{1}{2010}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(A=-\frac{1}{2010}-1+\frac{1}{2010}=-1\)
\(A=-\frac{1}{2010}-\frac{1}{2010.2009}-\frac{1}{2009.2008}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=-\left(\frac{1}{2010}+\frac{1}{2010.2009}+\frac{1}{2009.2008}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(A=-\left(\frac{1}{2010}+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2008}-\frac{1}{2009}+...+\frac{1}{2}-\frac{1}{3}+1-\frac{1}{2}\right)\)
\(A=-1\)