K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\);\(\Leftrightarrow\)\(\dfrac{AB^2\times CH}{AC^2\times CH}=\dfrac{BC\times BH\times CH}{BC\times CH\times CH}=\dfrac{BC\times AH^2}{BC\times CH^2}=\dfrac{AH^2}{CH^2}=\dfrac{9}{16}\)

\(\Leftrightarrow\)\(\dfrac{AH}{CH}=\dfrac{3}{4}\)\(\Leftrightarrow\)\(\dfrac{15}{CH}=\dfrac{3}{4}\)\(\Leftrightarrow\)\(HC=\left(15\times4\right)\div3\)=20

\(AH^2=HC\times HB\Rightarrow HB=AH^2\div HC=15^2\div20=11,25\)

11 tháng 11 2018

A B C H

Ta có : \(\tan C=\dfrac{AB}{AC}=\dfrac{3}{4}=>\widehat{C}\approx37^o\)

\(\widehat{B}+\widehat{C}=\widehat{A}=90^o\Rightarrow\widehat{B}=90^o-\widehat{C}=90^o-37^o=53^o\)

Xét tam giác ABH có :

\(\tan B=\dfrac{AH}{HB}=>HB=\dfrac{AH}{tanB}=\dfrac{15}{tan53^o}\approx11,3\left(cm\right)\)

Xét tam giác AHC có :

\(tanC=\dfrac{AH}{HC}\Rightarrow HC=\dfrac{AH}{tanC}=\dfrac{15}{tan37^o}\approx19,9\left(cm\right)\)

Vậy độ dài HB = 11,3 cm, độ dài HC = 19,9 cm

11 tháng 10 2018

Ta có BC=HB+HC=3,6+6,4=10(cm)

Xét △ABC vuông tại A đường cao AH:

AB2=BC.HB=10.3,6=36⇒AB=6(cm)

AC2=BC.HC=10.6,4=64⇒AC=8(cm)

\(AC.AB=BC.AH\Rightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

22 tháng 3 2018

a) Ta có:   \(\widehat{HAB}+\widehat{HBA}=90^0\)

                 \(\widehat{HAB}+\widehat{HAC}=90^0\)

suy ra:   \(\widehat{HBA}=\widehat{HAC}\)

Xét 2 tam giác vuông:  \(\Delta HBA\) và  \(\Delta HAC\) có:

           \(\widehat{BHA}=\widehat{AHC}=90^0\)

          \(\widehat{HBA}=\widehat{HAC}\)   (CMT)

suy ra:   \(\Delta HBA~\Delta HAC\)

b)   \(BC=BH+HC=25+36=61\)cm

 \(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)

suy ra:    \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm

            \(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm

p/s: tham khảo

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: \(BC=HB+HC=61\left(cm\right)\)

\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)

\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)

19 tháng 7 2021

Ta có: \(HC-HB=9\Rightarrow HC=9+HB\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC=HB\left(HB+9\right)\Rightarrow HB^2+9HB=36\)

\(\Rightarrow HB^2+9HB-36=0\Rightarrow\left(HB-3\right)\left(HB+12\right)=0\)

mà \(HB>0\Rightarrow HB=3\left(cm\right)\Rightarrow HC=3+9=12\left(cm\right)\)

19 tháng 7 2021

cam on ban nha :)