K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

vip

vip

vip

chúc bạn học ngu

2 tháng 5 2017

kết bạn đi ,rùi mình nói

2 tháng 5 2017

 dung ác quá

a) Xét tứ giác ADME có 

ME//AD(gt)

MD//AE(gt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ADME là hình chữ nhật(cmt)

nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)

mà ED=5cm(gt)

nên AM=5cm

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)

c) Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(gt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(gt)

Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔAHB vuông tại H(AH⊥BC tại H)

mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên HD=AD

Ta có: ΔAHC vuông tại H(AH⊥BC tại H)

mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên HE=AE

Xét ΔEAD và ΔEHD có 

EA=EH(cmt)

ED chung

AD=HD(cmt)

Do đó: ΔEAD=ΔEHD(c-c-c)

\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)

mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

nên \(\widehat{EHD}=90^0\)

hay HD⊥HE(đpcm)

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng

28 tháng 12 2016

a) Tự cm

b) Vì AB//DM mà ABvuoong góc với AC nên DM vuông góc với AC

Vì AH vuông góc với BC mà M thuộc BC nên CH vuông góc với AD

Xét tam giác ADC có:

DM vuông góc với AC

CM vuông góc với AD

mà DM cắt CM tại M

=> M là trực tâm của tam giác ADC

=> AM vuông góc với CD

=> đpcm

28 tháng 12 2016

c) Xét tam giác NCm có 

I là trung điểm của CM

=> IM=IN=IC

Xét tam giác IN< có

IM=IN

=> IMN cân tại I

=> IMN=INM góc

mà IMN=DMH

=> INM=DMH(3)

Xét tam giác AND có

H là trung điểm của AD

=> NH=HD=HA

tương tự tam giác NHD cân tại H

=>D=N( góc)(2)

mà HDN+DMH=90 độ(1)

Từ 1.2.3=> INM+MNH=90 độ

hay IN vuông góc với NH

đpcm

ĐỀ CHƯA RÕ TỪ SẼ CHO BÀI TỐT HƠN

=> A1ˆ=D1ˆA1^=D1^(so le trong )

* Xét △AHB và △DHM có

H1ˆ=H2ˆ(=900)H1^=H2^(=900)

AH =HD (D đối xứng với A qua H )

A1ˆ=D1ˆ(cmt)A1^=D1^(cmt)

=> △AHB = △DHM (g.c.g)

=> BH = MH (2 cạnh t/ứng )

* xét tứ giác ABDM có

AH=HD (d đối xứng với A qua H)

BH=MH (cmt)

=> ABDH là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

mà AD ⊥BM

=> ABDM là hình thoi (hbh có 2 đường chéo vuông góc với nhau )(đpcm)

b) vì

+DN//AB (gt)

+AB ⊥AC (△ABC vuông tại A)

=> AC ⊥DN (qh từ vuông góc đến song song )

=> DN là đường cao △ ADC(1)

mà AD ⊥CH ( AH ⊥AC)

=> CH là đường cao của △ADC

từ (1) và (2) => M là trực tâm của △ADC

=> AM là đường cao

=> AM ⊥DC (đpcm)