K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

Ta sẽ chứng minh: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-3\left(a^2+b^2+c^2\right)\ge0\) (1)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2+b^2+c^2}{a+b+c}\) (2)

Mặt khác,ta cũng có: \(3\left(a^2+b^2+c^2\right)=\frac{3\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{a+b+c}\)

Ta cần chứng minh \(a^2+b^2+c^2-3\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge0\) (3)

Thay a + b + c = 0 vào (1),ta cần chứng minh: \(a^2+b^2+c^2\ge0\)(luôn đúng) (4)

Từ (4) suy ra (3) đúng suy ra (2) đúng suy ra đcpm

12 tháng 11 2018

Thiếu chỗ câu cuối: "Từ (4) suy ra (3) đúng suy ra (2) luôn đúng suy ra (1) đúng.Từ đó suy ra đpcm"

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

29 tháng 3 2016

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

24 tháng 1 2018

nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé

23 tháng 1 2018

Nhỏ nhất hay lớn nhất

22 tháng 3 2019

Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)

\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)

Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)

"="<=>a=b=c=3

3 tháng 10 2019

https://hoc24.vn/id/2782086

3 tháng 10 2019

@Nguyễn Việt Lâm