K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

\(\Delta=b^2-4ac\)

\(\Delta=\left(3m-2\right)^2-4.2.\left(2m-5\right)=9m^2-12m+4-16m+40\)

\(\Delta=9m^2-28m+44\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta\ge0\Leftrightarrow9m^2-28m+44\ge0\left(lđ\right)\)

theo vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{b}{a}=\dfrac{3m-2}{2}\left(1\right)\\x_1.x_2=-\dfrac{c}{a}=\dfrac{5-2m}{2}\left(2\right)\end{matrix}\right.\)

ta có \(3x_1+2x_2=0\left(3\right)\)

từ (1)(3) ta có hệ

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m-2}{2}\\3x_1+2x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=3m-2\\3x_1+2x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-3m\\x_2=-\dfrac{3}{2}x_1\end{matrix}\right.\)(lấy dưới trừ trên)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-3m\\x_2=-\dfrac{3}{2}\left(2-3m\right)\end{matrix}\right.\)

ta có \(x_1.x_2=\dfrac{5-2m}{2}\)

\(\Leftrightarrow-\dfrac{3}{2}\left(2-3m\right)\left(2-3m\right)=\dfrac{5-2m}{2}\)

\(\Leftrightarrow-3\left(9m^2-12m+4\right)=5-2m\)

\(\Leftrightarrow-27m^2+36m-12=5-2m\)

\(\Leftrightarrow-27m^2+38m-17=0\) ( vô lý)

vậy pt vô nghiệm

NV
22 tháng 1 2024

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

22 tháng 5 2023

chữ xấu vậy trời😅

25 tháng 5 2022

\(\Delta=\left(-5\right)^2-4\left(m-1\right)\)

   \(=25-4m+4\)

   \(=29-4m\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow m< \dfrac{29}{4}\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-1\end{matrix}\right.\) (1)

\(2x_2=\sqrt{x_1}\) ; \(ĐK:x_1;x_2\ge0\)

\(\Leftrightarrow4x_2^2=\left|x_1\right|\)

\(\Leftrightarrow4x_2^2=x_1\) (2)

Thế \(x_1=4x^2_2\) vào \(\left(1\right)\), ta được:

\(\left\{{}\begin{matrix}4x_2^2+x_2-5=0\\4x_2^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_2=-\dfrac{5}{4}\left(ktm\right)\\x_2=1\left(tm\right)\end{matrix}\right.\\4.1^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=1\\m=5\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x_1=4\)

Vậy \(\left\{{}\begin{matrix}m=5\\x_1=4\\x_2=1\end{matrix}\right.\)

 

 

NV
17 tháng 4 2022

\(\Delta'=\left(m+4\right)^2-\left(m^2+8m+15\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m

Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=m+4-1=m+3\\x_2=m+4+1=m+5\end{matrix}\right.\)

\(3x_1-2x_2=15\)

\(\Leftrightarrow3\left(m+3\right)-2\left(m+5\right)=15\)

\(\Leftrightarrow m=16\)

26 tháng 5 2021

2x2-5x + 2m - 1 = 0  ( 1)

Dental = (-5)2 - 4*2*( 2m - 1)

           = 25 - 16m + 8

           = 33 - 16m

Phương trình (1) có 2 nghiệm phân biệt khi :

  33 - 16m > 0

 - 16m >-33

    m < 33/16

Theo hệ thức vi-ét ta có:

x1 + x2 = -b/a = 5/2

x1x2 = c/a =2m - 1/2

Theo bài ch0 :1/x1 + 1/x2 = 5/2

<=>2( x2 + x1   ) = 5x1x

<+> 2( 5/2 )  + 55 ( 2m - 1 ?

<+> 5 =  10m -5?2

 

<+> 

 

 

 

    

26 tháng 5 2021

<=>2( x2 + x1   ) = 5x1x

<=> 2( 5/2 )  = 5 ( 2m - 1 /)

<=> 5 - 10m + 5/2 = 0

<=> 10 - 20m + 5 = 0

<=> 15 - 20m = 0

<=> -20m = -15

<=> m = 5/4

Vậy m = 5/4  thỏa mãn yêu cầu bài toán 

( mình học khá nên chắc không đúng 100 %, có sai xót thì mng sửa hộ ạ ^^ )

 

 

 

12 tháng 2 2023

a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)

(*) \(m\ne0\) Phương trình có nghiệm

\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\) 

Hệ thức Viet kết hợp 4x1 + 3x2 = 1

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)

\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)

\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)

\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1