Tìm n thuộc Z để các số sau cp
a,n^2-n+13
b,n+18 và n-41 đều cp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(n^2+4n=k^2\)
\(\Leftrightarrow\left(n+2\right)^2-4=k^2\)
\(\Leftrightarrow\left(n+2\right)^2-k^2=4\)
\(\Leftrightarrow\left(n+k+2\right)\left(n-k+2\right)=4\)
Ma \(4=4.1=2.2\)
Suy ra:
\(\hept{\begin{cases}n+k+2=1\\n-k+2=4\end{cases}\left(1\right)}\)
\(\hept{\begin{cases}n+k+2=2\\n-k+2=2\end{cases}\left(2\right)}\)
Xet (1) ta duoc:
\(\hept{\begin{cases}n=1\\k=-2\end{cases}}\)
Thay vao thay khong thoa man nen loai
Xet (2) ta duoc:
\(\hept{\begin{cases}n=0\\k=0\end{cases}}\)
Thay vao thay thoa man nen nhan
Vay \(n=0\)thi \(n^2+4n\)la so chinh phuong
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12