K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(x)>0 với mọi x khi và chỉ khi: \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b^2-4ac< 0\\a>0\end{matrix}\right.\)

15 tháng 1 2022

Ta có:

\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)

\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)

 

15 tháng 1 2022

\(f\left(x\right)=0\) có phải f(0) đâu bạn

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

2 tháng 3 2023

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm