K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Vi a la so chan nen a co dang 2k nen : a3+6a2+8a

= 8k3+24k2+16k = 8.k.(k2+3k+2)=8k(k+1)(k+2)

vi k , k+1 , k+2 la 3 so lien tiep nen k.(k+1).(k+2) ⋮ 6

=> 8k(k+1)(k+2) ⋮ 6.8=48 ( dpcm)

27 tháng 12 2023

\(a^3+6a^2+8=a\left(a^2+6a+9-1\right)=\)

\(=a\left[\left(a+3\right)^2-1\right]=a\left(a+3-1\right)\left(a+3+1\right)=\)

\(=a\left(a+2\right)\left(a+4\right)\)

Đây là tích của 3 số chẵn liên tiếp đặt \(a=2k\)

\(\Rightarrow a\left(a+2\right)\left(a+4\right)=2k\left(2k+2\right)\left(2k+4\right)=\)

\(=8k\left(k+1\right)\left(k+2\right)=A\)

Ta thấy

\(k\left(k+1\right)\) chẵn đặt \(k\left(k+1\right)=2p\)

\(\Rightarrow A=16p\left(k+2\right)⋮16\) (1)

Ta thấy \(k\left(k+1\right)\left(k+2\right)⋮3\) (2) (Tích của 3 số TN liên tiếp)

Từ (1) và (2)

\(\Rightarrow A⋮16x3\Rightarrow A⋮48\) vì \(\left(16,3\right)=1\)

18 tháng 3 2018

a)Đặt \(A=n^3+6n^2+8n\)

\(A=n\left(n^2+6n+8\right)\)

\(A=n\left(n^2+2n+4n+8\right)\)

\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)

\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn

b)Đặt \(B=n^4-10n^2+9\)

\(B=n^4-n^2-9n^2+9\)

\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ

18 tháng 10 2015

vào câu hỏi tương tự nha

31 tháng 1 2017

a,n3+6n2+8n=n3+2n2+4n2+8n=n2(n+2)+4n(n+2)=(n+2)(n2+4n)=n(n+2)(n+4)

dễ thấy đây là tích 2 số chẵn liên tiếp ,trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 4 

=>n(n+2)(n+4) chia hết cho 16

n chẵn nên n chia 3 dư 1 hoặc n chia 3 dư 2

+n chia 3 dư 1 => n+2 chia hết cho 3

+n chia 3 dư 2 =>n+4 chia hết cho 3

=> n(n+2)(n+3) chia hết cho 3

Tóm lại n3+6n2+8n chia heêtt1 cho 3.16=48

31 tháng 1 2017

hình như mk làm chưa logic lắm,để làm lại:

Vì n chẵn =>n=2k

n3+6n2+8n=(2k)3+6(2k)2+8.2k=8k3+24k2+16k=8k(k2+3k+2)=8k(k+1)(k+2)

Vì k,k+1,k+2 là 3 SN liên tiếp nên tích của chúng chia hết cho 2 và 3 ,mà (2;3)=1 =>tích của chúng cũng chia hết cho 6

=>8k(k+1)(k+2) chia hết cho 8.6=48

31 tháng 1 2017

a)\(n^3+6n^2+8n=n\left(n+2\right)\left(n+4\right)\)

đầu tiên bạn chứng minh nó chia hết cho 16, rồi chia hết cho 3, gộp lại thành ra chia hết cho 48, mình ngại ghi lắm :v

b)\(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)

<=>\(a^2+2a+b^2-2b-2ab=63\)

<=>\(\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=63\)

<=>\(\left(a-b\right)^2+2\left(a-b\right)=63\)

<=>\(\left(a-b\right)\left(a-b+2\right)=63=7.9\)

<=> a - b = 7

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

2 tháng 11 2021

a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)

b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)

Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)

2 tháng 11 2021

https://meet.google.com/zvs-pdqd-skj?authuser=0&hl=vi. vào link ik