K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

\(x^2+5y^2-2xy+8y+4=0\)

\(x^2+y^2+4y^2-2xy+8y+4=0\)

\(\left(x^2-2xy+y^2\right)+\left(4y^2+8y+4\right)=0\)

\(\left(x-y\right)^2+\left(2y+2\right)^2=0\)

Vì \(\left(x-y\right)^2\ge0\forall x;y\)và \(\left(2y+2\right)^2\ge0\forall y\)

\(\Rightarrow\hept{\begin{cases}x-y=0\\2y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=-1\end{cases}\Rightarrow}x=y=-1}\)

Vậy x = y = -1

C=(2x-1)(x-1)(2x^2-3x-1)+2017

=(2x^2-3x+1)(2x^2-3x-1)+2017

=(2x^2-3x)^2-1+2017

=(2x^2-3x)^2+2016>=2016

Dấu = xảy ra khi 2x^2-3x=0

=>x=0 hoặc x=3/2

D=(x-1)(x-6)(x-3)(x-4)+10

=(x^2-7x+6)(x^2-7x+12)+10

=(x^2-7x)^2+18*(x^2-7x)+72+10

=(x^2-7x+9)^2+1>=1

Dấu = xảy ra khi x^2-7x+9=0

=>\(x=\dfrac{7\pm\sqrt{13}}{2}\)

27 tháng 8 2018

29 tháng 7 2021

1/

a)5x – 20y=5(x-4y)

b) 5x.(x –  1) –  3x(x – 1)=2x(x-1)

c) x.(x+y) – 5x – 5y=c) x.(x+y) – 5(x+y)=(x-5)(x+y)

2/

a)x2 + xy + x = x(x+y+1)=77.(77+22+1)=77.100=7700

b)  x . ( x – y ) + y . ( y – x )=(x-y)(x-y)=(x-y)2=(53-3)2=2500

3/

a) X + 5x2 = 0

⇒x(x+5)=0

⇒hoặc x=0

x+5=0⇒x=-5

b)x + 1 = ( x + 1 )2 

⇒(x + 1)-( x + 1 )2 =0

⇒x(x+1)=0

⇒ hoặc x=0

hoặc x+1=0⇒x=-1

29 tháng 7 2021

4/

a) 97 . 13 + 130 . 0,3 = 97.13+13.10.0,3=97.13+13.3=100.13=1300

b)86 . 153 – 530 . 8,6=86.153–53.10.8,6=86.153-53.86=86.100=8600

C) 85 .12,7 + 5,3 . 12,7= 12,7(85+5,3)=12,7.90,3=1146,81

D)52.143 – 52 . 39 – 8.26=52(143-39)-8,26=52.104-8,26=5399,74

22 tháng 9 2017

Đáp án đúng : A

1 tháng 9 2021

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

15 tháng 2 2018

Đáp án C

G T ⇔ x 2 + y − 3 x + y 2 − 4 y + 4 = 0 y 2 + x − 4 y + x 2 − 3 x + 4 = 0

có nghiệm  ⇔ Δ x ≥ 0 Δ y ≥ 0 ⇔ 0 ≤ x ≤ 4 3 1 ≤ y ≤ 7 3

Và:

x y = 3 x + 4 y − x 2 − y 2 − 4 ⇒ P = 3 x 3 + 18 x 2 + 45 x − 8 ⏟ f x + − 3 y 3 + 3 y 2 + 8 y ⏟ g y

 Xét hàm số f x = 3 x 3 + 18 x 2 + 45 x − 8 trên  0 ; 4 3 ⇒ max 0 ; 4 3 f x = f 4 3 = 820 9

Xét hàm số g x = − 3 y 3 + 3 y 2 + 8 y trên  1 ; 7 3 ⇒ max 1 ; 7 3 g x = f 4 3 = 80 9

Vật P ≤ max 0 ; 4 3 f x + max 1 ; 7 3 g x = 100

Dấu “=” xảy ra khi  x = y = 4 3

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)