K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

2n2+5n-1=n(2n-1)+6n-1

             =n(2n-1)+3(2n-1)+2

do 2n2+5n-1 chia hết cho 2n-1 => 2 chia hết cho 2n-1

=> 2n-1 thuộc tập ước của 2 là 1;2

=> n=1 (TM) n=1,5 (loại)

13 tháng 9 2017

Ta có

n+6 chia hết cho n-3

=> n-3 +9 chia hết cho n-3

Vì n-3 chia hết cho n-3

=> 9 chia hết cho n-3

Xét các ước của 9 để tìm đk n là số tự nhiên

Ta có:

2n+8 chia hết cho n+2

=>2(n+2)+4 chia hết cho n+2

Các phần sau làm tương tự câu trên

Ta có

3n+5 chia hết cho -2n+1

=> 3n+5 chia hết cho 2n-1

=> 6n+10 chia hết cho 2n-1

=>3(2n-1)+13 chia hết cho 2n-1

Phần sau làm tương tự nhé bạn

16 tháng 7 2015

2n+3 chi hết cho n+1

=>2n+2+1 chia hết cho n+1

Vì 2n+2 chia hết cho n+1

=> 1 chia hết cho n+1

=> n+1 thuộc Ư(1)

n+1n
10
-1-2  

KL: n=0 hoặc n= -2

16 tháng 7 2015

4n+8 chia hết cho 2n+2

=> 4n+4+4 chia hết cho 2n+2

Vì 4n+4 chia hết cho 2n+2

=> 4 chia hết cho 2n+2

=> 2n+2 thuộc Ư(4)

2n+2n
1KTM
-1KTM
20
-2-2
41
-4-3

KL: n thuộc..............

22 tháng 2 2017

a) 2n + 1 \(⋮\)n - 5

=> 2.( n - 5 ) + 1 + 10   \(⋮\)n - 5

=> 2.( n - 5 ) + 11  \(⋮\)n - 5

=> 11  \(⋮\)n - 5 [ vì 2.( n - 5 )  \(⋮\)n - 5 ]

=> n - 5 \(\in\)Ư(11) = { -11 ;- 1;1 ; 11 }

=> n \(\in\){ -6; 4;6;16 } 

Vậy: n \(\in\){ -6; 4;6;16 } 

b) n2 + 3n - 13 \(⋮\)n + 3 

=> n.n + 3n - 13  \(⋮\)n + 3 

=> n.( n+ 3 ) + 3 . ( n + 3 ) - 13 - 3n - 9  \(⋮\)n + 3 

=> 13 - 3n - 9  \(⋮\)n + 3  [ vì  n.( n + 3 ) và 3.( n + 3 )  \(⋮\)n + 3  ] 

=> 3n - 22  \(⋮\)n + 3 

=>3.( n - 3 ) - 22 - 9  \(⋮\)n + 3 

=> 3.( n - 3 ) - 31    \(⋮\)n + 3 

=> 31  \(⋮\)n + 3  [ vì 3. ( n - 3 )  \(⋮\)n + 3  ]

=> n + 3 \(\in\)Ư ( 31 ) = { -31 ; -1 ; 1 ; 31 }

=> n \(\in\){ -34 ; -4; -2 ; 28 } 

Vậy:  n \(\in\){ -34 ; -4; -2 ; 28 } 

c) n+ 3 \(⋮\) n - 1 

=> n.n + 3  \(⋮\) n - 1 

=> n.( n - 1 ) + 3 - n  \(⋮\) n - 1 

=> 3 - n  \(⋮\) n - 1  [  vì n.( n - 1 )  \(⋮\) n - 1  ]

=>  n - 3  \(⋮\) n - 1 

=> ( n - 1 ) - 2  \(⋮\) n - 1 

=> n - 1 \(\in\)Ư( 2 )= { -2 ; - 1; 1 ; 2 }

=> n  \(\in\){ -1 ; 0 ;2 ;3 }

 vậy:  n  \(\in\){ -1 ; 0 ;2 ;3 }

7 tháng 10 2018

\(2n^2+5n-1=2n^2-n+6n-3+2\)

                            \(=n\left(2n-1\right)+3\left(2n-1\right)+2\)

Để \(2n^2+5n-1⋮2n-1\)thì \(2⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà 2n - 1 là số lẻ nên:

\(2n-1\in\left\{-1;1\right\}\Rightarrow n\in\left\{0;1\right\}\)

Chúc bạn học tốt.

7 tháng 10 2018

2n^2 + 5n - 1 - 2n^2 - n 6n - 1 6n - 3 - 2 2n - 1 n + 3

\(2n^2+5n-1\)chia hết cho \(2n-1\)

\(\Leftrightarrow2\)chia hết cho \(2n-1\)

\(\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Leftrightarrow2n\in\left\{-1;0;2;3\right\}\)

\(\Leftrightarrow n\in\left\{-\frac{1}{2};0;1;\frac{3}{2}\right\}\)

Mà \(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

17 tháng 12 2018

\(2n^2-n+2⋮2n+1\)

\(2n^2+n-2n-1+3⋮2n+1\)

\(n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)

\(\left(2n+1\right)\left(n-1\right)+3⋮2n+1\)

Vì \(\left(2n+1\right)\left(n-1\right)⋮2n+1\)

\(\Rightarrow3⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow n\in\left\{0;1;-1;-2\right\}\)

Vậy.........

20 tháng 11 2014

B,

6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1

Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ

Ư (4) ={ 1;2;4}

Vì n là số lẻ nên

2n + 1 =1 

 2n       =1-1

2n        =0

 n          = 0 : 2 =0

Vậy n =0

30 tháng 12 2015

A3n+7 chia het cho n+2

3n-12+5 chia het cho n+2

(3n-12)+5 chia het cho n+2

3(n-4)+5 chia het cho n+2

=>5 chia het cho n+2

=>n+2 thuoc (U)5={1;-1;5;-5}

Neu:n+2=1=>n=-1(loai)

Neu:n+2=-1=>n=-3(loai)

Neu:n+2=5=>n=3

Neu:n+2=-5=>n=-7(loai)

Vay:n=3

21 tháng 10 2016

2n3-n2+5n+6

=n2(2n+1)-2n2+5n+6

=n2(2n+1)-n(2n+1)+6n+6

=> 6n+6 chia hết 2n+1

3(2n+1)+3 chia hết 2n+1

=> 3 chia hết 2n+1

=> 2n+1 thuộc Ư(3)=1 ; 3 ; -1 ; -3

2n = 0 ; 2 ; -2 ; -4

n = 0 ; 1 ; -1 ; -2

kb vs mik nha