Chứng tỏ rằng , với mọi x,y thuộc N ta luôn có
a, 2x + b y chia hết cho 2
b, 9x +27y chia hết cho 9
c, 5x + 15y + 3 không chia hết cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, SAI ĐỀ
b, Ta có:
9x+27y
=9x+3.9y
=9(x+3y) chia hết cho 9(ĐPCM)
c, Ta có:
5x+15y=5(x+3y)
chia hết cho 5 nhưng 3 ko chia hết cho 5
=> 5x+15y ko chia hết cho 5(ĐPCMMMMMMMMMMMMMMMMMMMMMMMM)
a)Vì 2 chia hết cho 2 nên 2x chia hết cho 2, 6 chia hết cho 2 nên 6y chia hết cho 2. 2 số chia hết cho 2 có tổng chia hết cho 2 nên x và y nhân với 2 và 6 thì luôn chia hết cho 2
b)Vì 3 chia hết cho 3 nên 3x chia hết cho 3, 12 chia hết cho 3 nên 12y chia hết cho 3. 2 số chia hết cho 3 có tổng chia hết cho 3 nên x và y nhân với 3 và 12 thì luôn chia hết cho 3
c)Vì 5 chia hết cho 5 nên 5x chia hết cho 5, 10 chia hết cho 5 nên 10y chia hết cho 5. 2 số chia hết cho 5 có tổng chia hết cho 5 nên x và y nhân với 5 và 10 thì luôn chia hết cho 5
d) Vì 9 chia hết cho 9 nên 9x chia hết cho 9, 27 chia hết cho 9 nên 27y chia hết cho 9. 2 số chia hết cho 9 có tổng chia hết cho 9 nên x và y nhân với 9 và 27 thì luôn chia hết cho 9
toán này có trong thi HSG lớp 9 bạn nhé:
nhóm nhân tử làm xuất hiện cái số chia hết cho số cần chia VD như:2a+4b=2(a+2b) mà 2 nhân với bất cứa 1 số nào cũng chia hết cho 2 nên BT chia hết cho 2
còn phần dưới hì phân tích 2 số đâu chia hết cho 1 số chẵn mà cộng thếm 1 thì chia hết cho số lẻ nên BT sai
câu a với b chẵn mới làm được nhé
câu b, 9x+27y=9(x+3y) chia hết cho 9
câu c, 5x+15y+3=5(x+3y)+3
ví 5(x+3y) chia hết cho 5
3 ko chia hết cho 5
suy ra 5x+15y+3 ko chia hết cho 5
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a) a,2x+6y chia hết cho 2
= 2(x+3y ) chia hết cho 2 vì 2 chia hết cho 2 nên 2 nhân với sô nào cũng chia hết cho 2
b,5x+10y chia hết cho 5
= 5(x+2y) chia hết cho 5 vì 5 chia hết cho 5 nên 5 nhân với sô nào cũng chia hết cho 5
Phần a) đề sai bạn nha
b) Do 9x chia hết cho 9 và 27y chia hết cho 9
suy ra 9x+27y chia hết cho 9(đpcm)
c) ???
tích đúng đy