K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

Ta có: 

\(\left(3n\right)^{100}=3^{100}.n^{100}\)

\(=3^4.3^{96}.n^{100}\)

\(=81.3^{96}.n^{100}⋮81\)

Vậy ....

6 tháng 11 2018

Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)

Vậy...

~~~~~~~~~~~~~

26 tháng 11 2017

Ta có : ( 3n )100 = ( 3n )4.25 = 34.25.n4.25 = 8125 . n100 chia hết cho 81

Vậy ( 3n )100 chia hết cho 81 ( dpcm )

11 tháng 10 2017

Ta có (3n)100=3100n100=(34)25n100=8125n100\(⋮\)81

11 tháng 10 2017

Ta có: (3n)100

        =3100.n100

        =34.396.n100

           =81.396.n100

Vì 81 chia hết cho 81

=> 81.396.n100

Vậy (3n)100 chia hết cho 81

16 tháng 12 2016

Nếu N lẻ thì lẻ(lẻ+5) là chẵn

Nếu N chẵn thì chẵn(chẵn+5) là chẵn 

Cả hai trường hợp đều cho ta kết quả chẵn nén với mọi n (N+5)chia hết cho 2

30 tháng 5 2016

ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0

Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2

nhập hội ha

Xét các TH:

-TH1:\(n=2k\left(k\inℕ\right)\) 

\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)

-TH2:\(n=2k+1\left(k\inℕ\right)\)

\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)

Xét \(\(2\)\) trường hợp
Trường hợp 1:

+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))

Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:

+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))

Theo bài ra ta có:

\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)

\(\(=2.\left(n^2+7n+3\right)⋮2\)\)

\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)

_Minh ngụy_

15 tháng 9 2021

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)

Ta có: \(a^2\) = \(\left(5k+4\right)^2\)

      = 25\(k^2\) + 40k + 16

      = 25\(k^2\) + 40k + 15 + 1

      = 5(5\(k^2\)+ 8k +3) +1

Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5

Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)

15 tháng 9 2021

cảm ơn cậu nha

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!