Chứng minh rằng: (3n)100 chia hết cho 81 với mọi số tự nhiên n.
Chỉ giúp mình nhé cảm ơn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : ( 3n )100 = ( 3n )4.25 = 34.25.n4.25 = 8125 . n100 chia hết cho 81
Vậy ( 3n )100 chia hết cho 81 ( dpcm )
Ta có: (3n)100
=3100.n100
=34.396.n100
=81.396.n100
Vì 81 chia hết cho 81
=> 81.396.n100
Vậy (3n)100 chia hết cho 81
Nếu N lẻ thì lẻ(lẻ+5) là chẵn
Nếu N chẵn thì chẵn(chẵn+5) là chẵn
Cả hai trường hợp đều cho ta kết quả chẵn nén với mọi n (N+5)chia hết cho 2
ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0
Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2
nhập hội ha
Xét các TH:
-TH1:\(n=2k\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)
-TH2:\(n=2k+1\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)
Xét \(\(2\)\) trường hợp
Trường hợp 1:
+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))
Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:
+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))
Theo bài ra ta có:
\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)
\(\(=2.\left(n^2+7n+3\right)⋮2\)\)
\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)
_Minh ngụy_
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: \(a^2\) = \(\left(5k+4\right)^2\)
= 25\(k^2\) + 40k + 16
= 25\(k^2\) + 40k + 15 + 1
= 5(5\(k^2\)+ 8k +3) +1
Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5
Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Ta có:
\(\left(3n\right)^{100}=3^{100}.n^{100}\)
\(=3^4.3^{96}.n^{100}\)
\(=81.3^{96}.n^{100}⋮81\)
Vậy ....
Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)
Vậy...
~~~~~~~~~~~~~