tim so tu nhien nho nhatbiet rang so do chia 9 du 5 chia 7 du 4 va chia 5 thi du 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi số cần tìm là a
Ta có: a chia 9 dư 5 => a - 5 chia hết cho 9 => 2(a - 5) chia hết cho 9 => 2a - 10 chia hết cho 9 => 2a - 10 + 9 chia hết cho 9 => 2a - 1 chia hết cho 9
a chia 7 dư 4 => a - 4 chia hết cho 7 => 2(a - 4) chia hết cho 7 => 2a - 8 chia hết cho 9 => 2a - 8 + 7 chia hết cho 7 => 2a - 1 chia hết cho 7
a chia 5 dư 3 => a - 3 chia hết cho 5 => 2(a - 3) chia hết cho 5 => 2a - 6 chia hết cho 5 => 2a - 6 + 5 chia hết cho 5 => 2a - 1 chia hết cho 5
=> 2a - 1 thuộc BC(5;7;9)
5 = 5
7 = 7
9 = 9
BCNN(5,7,9) = 5.7.9 = 315
=> 2a - 1 = 315 => 2a = 316 => a = 158
Vậy số cần tìm là 158
b, Ta có:
A = 1 + 2012 + 20122 + ... + 201272
2012A = 2012 + 20122 + 20123 +...+ 201273
2012A - A = (2012 + 20122 + 20123 + .... + 201273) - (1 + 2012 + 20122 + ... + 201272)
2011A = 201273 - 1
A = \(\frac{2012^{73}-1}{2011}\)
Vì \(\frac{2012^{73}-1}{2011}< 2012^{73}-1\) nên A < B
Vậy A < B
Giải
Gọi số tự nhiên đó là a.
Vì a chia 3, 4, 5, 6 đều dư 2 nên \(a-2\in BC\left(3,4,5,6\right)\)
Ta có: 4 = 22 ; 6 = 2. 3
\(\Rightarrow\left[3,4,5,6\right]=3.2^2.5=60\)
\(\Rightarrow a-2\in B\left(60\right)=\left\{0;60;120;180;240;300;360;420;...\right\}\)
\(\Rightarrow a\in\left\{2;62;122;182;242;302;362;422;...\right\}\)
Mà a chia 7 và a là số nhỏ nhất nên a = 122
Vậy số tự nhiên cần tìm là 122.
Gọi số cần tìm là a, ta thấy: (a+2) chia hết cho 3,4,5 và 6 và do a nhỏ nhất nên a thuộc BC(3,4,5,6)
Ta có: 3 = 3, 4 = 22, 5 = 5, 6 = 3.2
BCNN(3,4,5,6) = 3.22.5 = 60
BC(3,4,5,6) = B(60) = {0, 60,120,180,...}
--> a+2 = {0, 60, 120, 180,...}
--> a = {-2, 58, 118, 179, ..}
Ta thấy trong dãy có số 539 là số nhỏ nhất chia hết cho 11
Vậy số cần tìm là 539
A= 5a+3 =7b+4=9c+5
2A=10a+6=14b+8 = 18c+10
2A-1 = 5(2a+1) =7(2b+1) =9(2c+1)
vậy 2A-1 là BSCNN của 5;7;9 --> 2A-1 =5.7.9 =315 --> A= 158