K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

Thực hiện phép chia đa thức ta được :

3x5 - x4 - 2x3 + x2 + 4x + 5 : ( x2 - 2x + 2 ) = ( 3x3 + 5x2 + 2x - 5 ) dư ( -10x + 15 )

Vậy để dư bằng 0 thì -10x + 15 = 0 <=> 3/2

Vậy x = 3/2

a: \(=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)

Để số dư là 0 thì -3x+7=0

hay x=7/3

b: \(=\dfrac{x^5+x^3+2x^4+2x^2+2x^3+2x-2x^2-2-x-1}{x^2+1}\)

\(=x^3+2x^2+2x-2+\dfrac{-x-1}{x^2+1}\)

Để số dư là 0 thì -x-1=0

hay x=-1

19 tháng 12 2023

  loading...  

loading...  loading...  

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

20 tháng 2 2020

a) M(x) = A(x) - 2B(x) + C(x)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))

\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)

b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:

\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)

\(M\left(x\right)=2.0,25+\frac{3}{16}\)

\(M\left(x\right)=0,5+\frac{3}{16}\)

\(M\left(x\right)=\frac{11}{16}\)

c) Ta có : \(x^2\ge0\)

\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)

Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)

18 tháng 1 2017

Bài 2 thay 2 vào x rồi giải bình thường tìm k 

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................