cho hình bình hành ABCD .Gọi O là giác điểm của 2 đường chéo , gọi E là 1 điểm thuộc cạnhAB, F là giao điểm của EO và CD, vé EG //AC(G thuộc BC), FH//AC(H thuộc AD).Cm a, EG=HF; b, HE//FG
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 1 2017
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:
a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng
b) Tứ giác EGFH lầ hình vuông
19 tháng 10 2021
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của DC
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành
a: Xét ΔOAE và ΔOCF có
góc OAE=góc OCF
OA=OC
góc AOE=góc COF
Do đó: ΔOAE=ΔOCF
=>EA=CF: OE=OF
Xét ΔBAC có EG//AC
nên EG/AC=BE/BA
Xét ΔDAC có HF//AC
nên HF/AC=DF/DC
=>EG=HF
b: Xét tứ giác EGFH có
EG//FH
EG=FH
Do đó: EGFH là hình bình hành
=>HE//FG